Skip to main content

Advertisement

Log in

The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Prior global climate model (GCM) experiments have shown that the Tibetan Plateau and related orography play a significant role in enhancing the Indian Monsoon, particularly during its onset, and the East Asian monsoon. However, these experiments have been largely performed with atmosphere-only, lower-resolution GCMs that neglect the influence of atmosphere–ocean coupling, and do not resolve tropical cyclones (TCs). Here we explore the influence of Asian orography on tropical circulations in a Geophysical Fluid Dynamics Laboratory GCM at two different atmosphere/land resolutions (\(\sim\)50 and 200 km), and with or without atmosphere–ocean coupling. Atmosphere–ocean coupling is found to play a significant role in the precipitation response due to the Asian orography, enhancing the precipitation increase over the Western North Pacific (hereafter WNP), and drying the Arabian Sea. In these same regions, the higher resolution model, which resolves TCs up to category 3, suggests that Asian orography has a significant influence on TCs, increasing TC frequency in the WNP, and decreasing it in the Arabian Sea. However, in contrast to precipitation, this TC response does not appear to be strongly affected by the atmosphere–ocean coupling. Connections between the direct atmospheric circulation response to Asian orography, ocean circulation changes, and these various effects on precipitation and tropical cyclones are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abe M, Kitoh A, Yasunari T (2003) An evolution of the Asian summer monsoon associated with mountain upliftsimulation with the MRI atmosphere–ocean coupled GCM. J Meteorol Soc Jpn Ser II 81(5):909–933

    Article  Google Scholar 

  • Abe M, Yasunari T, Kitoh A (2004) Effects of large-scale orography on the coupled atmosphere–ocean system in the tropical Indian and Pacific Oceans in boreal summer. J Meteorol Soc Jpn Ser II 82(2):745–759

    Article  Google Scholar 

  • Abe M, Yasunari T, Kitoh A (2005) Sensitivity of the central Asian climate to uplift of the Tibetan Plateau in the coupled climate model (MRI-CGCM1). Island Arc 14(4):378–388. https://doi.org/10.1111/j.1440-1738.2005.00493.x

    Article  Google Scholar 

  • Abe M, Hori M, Yasunari T, Kitoh A (2013) Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: the role of the air-sea interaction. J Geophys Res Atmosph 118(4):1760–1776. https://doi.org/10.1002/jgrd.50210

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Baldwin J, Vecchi G (2016) Influence of the Tian Shan on Arid Extratropical Asia. J Clim 29(16):5741–5762. https://doi.org/10.1175/JCLI-D-15-0490.1

    Article  Google Scholar 

  • Barsugli JJ, Battisti DS (1998) The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J Atmos Sci 55(4):477–493. https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26(7):2279–2287. https://doi.org/10.1175/JCLI-D-12-00493.1

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222

    Article  Google Scholar 

  • Boos WR, Kuang Z (2013) Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci Rep. https://doi.org/10.1038/srep01192

  • Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1(8):515–519. https://doi.org/10.1038/ngeo248

    Article  Google Scholar 

  • Broccoli AJ, Manabe S (1997) Mountains and midlatitude aridity. In : Tectonic uplift and climate change pp 89–121

  • Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20(19):4819–4834. https://doi.org/10.1175/JCLI4282.1

    Article  Google Scholar 

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2002) Role of Asian and African orography in Indian summer monsoon. Geophysl Res Lett 29(20):50–51

    Google Scholar 

  • Chen J, Bordoni S (2014) Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: an energetic perspective. J Clim 27(8):3052–3072

    Article  Google Scholar 

  • Chiang JCH, Fung IY, Wu CH, Cai Y, Edman JP, Liu Y, Day JA, Bhattacharya T, Mondal Y, Labrousse CA (2015) Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat Sci Rev 108:111–129. https://doi.org/10.1016/j.quascirev.2014.11.009

    Article  Google Scholar 

  • Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325(5939):460–464. https://doi.org/10.1126/science.1171255

    Article  Google Scholar 

  • Cohen NY, Boos WR (2017) The influence of orographic Rossby and gravity waves on rainfall. Q J R Meteorol Soc 143(703):845–851. https://doi.org/10.1002/qj.2969

    Article  Google Scholar 

  • Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee HC, Pacanowski RC (2012) Simulated climate and climate change in the GFDL CM2. J Clim 5 High-resolut Coupled Clim Model 25(8):2755–2781

    Google Scholar 

  • Edwards M (1988) Data announcement 88-MGG-02: digital relief of the surface of the earth. National Oceanic and Atmospheric Administration, Boulder

    Google Scholar 

  • Evan AT, Camargo SJ (2011) A climatology of Arabian Sea cyclonic storms. J Clim 24(1):140–158

    Article  Google Scholar 

  • Fallah B, Cubasch U, Prmmel K, Sodoudi S (2015) A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Clim Dyn. https://doi.org/10.1007/s00382-015-2914-5

  • Gadgil S, Kumar KR (2006) The Asian monsoon agriculture and economy. In: The Asian monsoon, Springer Praxis Books. Springer, Berlin, pp 651–683. https://doi.org/10.1007/3-540-37722-0_18

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. https://doi.org/10.1002/qj.49710644905

    Article  Google Scholar 

  • Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. J Atmos Sci 32(8):1515–1541

    Article  Google Scholar 

  • Harris LM, Lin SJ, Tu C (2016) High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J Clim 29(11):4293–4314

    Article  Google Scholar 

  • He B, Liu Y, Wu G, Wang Z, Bao Q (2018) The role of air–sea interactions in regulating the thermal effect of the TibetanIranian Plateau on the Asian summer monsoon. Clim Dyn. https://doi.org/10.1007/s00382-018-4377-y

    Article  Google Scholar 

  • Hoskins B, Wang B (2006) Large-scale atmospheric dynamics. The Asian monsoon. Springer, Berlin, pp 357–415

    Chapter  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  • Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern WF, Wittenberg AT, Krishnamurthy L, Zhang S, Msadek R, Kapnick S, Underwood S, Zeng F, Anderson WG, Balaji V, Dixon K (2014) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28(5):2044–2062. https://doi.org/10.1175/JCLI-D-14-00112.1

    Article  Google Scholar 

  • Jiang H, Zipser EJ (2010) Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: regional, seasonal, and interannual variations. J Clim 23(6):1526–1543

    Article  Google Scholar 

  • Kapnick SB, Delworth TL, Ashfaq M, Malyshev S, Milly PC (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7(11):834

    Article  Google Scholar 

  • Khouakhi A, Villarini G, Vecchi GA (2016) Contribution of tropical cyclones to rainfall at the global scale. J Clim 30(1):359–372. https://doi.org/10.1175/JCLI-D-16-0298.1

    Article  Google Scholar 

  • Kitoh A (1997) Mountain uplift and surface temperature changes. Geophys Res Lett 24(2):185–188

    Article  Google Scholar 

  • Kitoh A (2002) Effects of large-scale mountains on surface climateA coupled ocean-atmosphere general circulation model study. J Meteorol Soc Jpn Ser II 80(5):1165–1181

    Article  Google Scholar 

  • Kitoh A (2004) Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J Clim 17(4):783–802. https://doi.org/10.1175/1520-0442(2004)017<0783:EOMUOE>2.0.CO;2

  • Kitoh A (2007) ENSO modulation by mountain uplift. Clim Dyn 28(7–8):781–796. https://doi.org/10.1007/s00382-006-0209-6

    Article  Google Scholar 

  • Kitoh A, Motoi T, Arakawa O (2010) Climate modelling study on mountain uplift and Asian monsoon evolution. Geol Soc Lond Special Publ Spec 342(1):293–301. https://doi.org/10.1144/SP342.17

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6(8):1587–1606

    Article  Google Scholar 

  • Koseki S, Watanabe M, Kimoto M (2008) Role of the midlatitude air-sea interaction in orographically forced climate. J Meteorol Soc Jpn Ser II 86(2):335–351. https://doi.org/10.2151/jmsj.86.335

    Article  Google Scholar 

  • Krishnamurthy L, Vecchi GA, Msadek R, Murakami H, Wittenberg A, Zeng F (2016) Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J Clim 29(7):2375–2394

    Article  Google Scholar 

  • Krishnamurthy L, Vecchi GA, Yang X, van der Wiel K, Balaji V, Kapnick SB, Jia L, Zeng F, Paffendorf K, Underwood S (2018) Causes and probability of occurrence of extreme precipitation events like Chennai 2015. J Clim. https://doi.org/10.1175/JCLI-D-17-0302.1

  • Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol 101(2):177–190

    Article  Google Scholar 

  • Lee JY, Wang B, Seo KH, Ha KJ, Kitoh A, Liu J (2015) Effects of mountain uplift on global monsoon precipitation. Asia-Pac J Atmos Sci 51(3):275–290

    Article  Google Scholar 

  • Lee SS, Lee JY, Ha KJ, Wang B, Kitoh A, Kajikawa Y, Abe M (2013) Role of the Tibetan plateau on the annual variation of mean atmospheric circulation and storm track activity. J Clim 26(14):5270–5286

    Article  Google Scholar 

  • Leetmaa A (1972) The response of the Somali Current to the southwest monsoon of 1970. Deep Sea Res Oceanogr Abstr 19(4):319–325. https://doi.org/10.1016/0011-7471(72)90025-3

    Article  Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183(34):223–245. https://doi.org/10.1016/S0031-0182(01)00488-6

    Article  Google Scholar 

  • Ma D, Boos W, Kuang Z (2014) Effects of orography and surface heat fluxes on the South Asian summer monsoon. J Clim 27(17):6647–6659. https://doi.org/10.1175/JCLI-D-14-00138.1

    Article  Google Scholar 

  • Milly PC, Malyshev SL, Shevliakova E, Dunne KA, Findell KL, Gleeson T, Liang Z, Phillipps P, Stouffer RJ, Swenson S (2014) An enhanced model of land water and energy for global hydrologic and earth-system studies. J Hydrometeorol 15(5):1739–1761

    Article  Google Scholar 

  • Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Ann Rev Earth Planet Sci 38(1):77

    Article  Google Scholar 

  • Murakami H, Vecchi GA, Underwood S, Delworth TL, Wittenberg AT, Anderson WG, Chen JH, Gudgel RG, Harris LM, Lin SJ, Zeng F (2015) Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J Clim 28(23):9058–9079. https://doi.org/10.1175/JCLI-D-15-0216.1

    Article  Google Scholar 

  • Norris JR, Leovy CB (1994) Interannual variability in stratiform cloudiness and sea surface temperature. J Clim 7(12):1915–1925

    Article  Google Scholar 

  • Okajima H, Xie SP (2007) Orographic effects on the northwestern Pacific monsoon: role of air–sea interaction. Geophys Res Lett 34(21):L21708. https://doi.org/10.1029/2007GL032206

    Article  Google Scholar 

  • Park HS, Chiang JCH, Son SW (2010) The role of the central Asian mountains on the midwinter suppression of north Pacific storminess. J Atmos Sci 67(11):3706–3720. https://doi.org/10.1175/2010JAS3349.1

    Article  Google Scholar 

  • Park HS, Chiang JC, Bordoni S (2012) The mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J Clim 25(7):2394–2407

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360(6405):647

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):1–29

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Rind D, Russell G, Ruddiman WF (1997) The effects of uplift on ocean–atmosphere circulation. In: Ruddiman WF (ed) Tectonic uplift and climate change, Springer, Boston, pp  123–147. https://doi.org/10.1007/978-1-4615-5935-1_6

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122(534):1385–1404

    Article  Google Scholar 

  • Sampe T, Xie SP (2010) Large-scale dynamics of the Meiyu-Baiu Rainband: environmental forcing by the westerly jet. J Clim 23(1):113–134

    Article  Google Scholar 

  • Shi X, Wang Y, Xu X (2008) Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: a regional model study. Geophys Res Lett 35(19):L19707. https://doi.org/10.1029/2008GL034740

    Article  Google Scholar 

  • Shi Z, Liu X, Liu Y, Sha Y, Xu T (2014) Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Clim Dyn 44(11–12):3067–3076. https://doi.org/10.1007/s00382-014-2217-2

    Article  Google Scholar 

  • Simpson IR, Seager R, Shaw TA, Ting M (2015) Mediterranean summer Climate and the importance of Middle East topography. J Clim 28(5):1977–1996

    Article  Google Scholar 

  • Steenburgh WJ, Schultz DM, Colle BA (1998) The structure and evolution of gap outflow over the gulf of Tehuantepec Mexico. Mon Weather Rev 126(10):2673–2691. https://doi.org/10.1175/1520-0493(1998)126<2673:TSAEOG>2.0.CO;2

  • Stocker TF (2014) Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tang H, Micheels A, Eronen JT, Ahrens B, Fortelius M (2012) Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim Dyn 40(5–6):1531–1549. https://doi.org/10.1007/s00382-012-1603-x

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27(21):7994–8016

    Article  Google Scholar 

  • Wang Z, Duan A, Yang S (2018) Potential regulation on the climatic effect of Tibetan Plateau heating by tropical airsea coupling in regional models. Clim Dyn. https://doi.org/10.1007/s00382-018-4218-z

  • Wei HH, Bordoni S (2016) On the role of the African topography in the South Asian monsoon. J Atmos Sci 73(8):3197–3212. https://doi.org/10.1175/JAS-D-15-0182.1

    Article  Google Scholar 

  • White RH, Battisti DS, Roe GH (2017) Mongolian mountains matter most: impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J Clim 30(11):4065–4082

    Article  Google Scholar 

  • van der Wiel K, Kapnick SB, Vecchi GA, Cooke WF, Delworth TL, Jia L, Murakami H, Underwood S, Zeng F (2016) The resolution dependence of contiguous. U.S. precipitation extremes in response to CO2 forcing. J Clim 29(22):7991–8012

    Article  Google Scholar 

  • Wu G, Liu Y, He B, Bao Q, Duan A, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep. https://doi.org/10.1038/srep00404

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Ye PDDZ, Wu GX (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys 67(1–4):181–198. https://doi.org/10.1007/BF01277509

    Article  Google Scholar 

  • Zehnder JA, Powell DM, Ropp DL (1999) The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon Weather Rev 127(7):1566–1585. https://doi.org/10.1175/1520-0493(1999)127<1566:TIOEWO>2.0.CO;2

  • Zhang W, Vecchi GA, Murakami H, Delworth T, Wittenberg AT, Rosati A, Underwood S, Anderson W, Harris L, Gudgel R, Lin SJ, Villarini G, Chen JH (2015) Improved simulation of tropical cyclone responses to ENSO in the western north Pacific in the high-resolution GFDL HiFLOR coupled climate model. J Clim 29(4):1391–1415. https://doi.org/10.1175/JCLI-D-15-0475.1

    Article  Google Scholar 

  • Zhang W, Vecchi GA, Murakami H, Villarini G, Jia L (2016) The pacific meridional mode and the occurrence of tropical cyclones in the western north Pacific. J Clim 29(1):381–398

    Article  Google Scholar 

Download references

Acknowledgements

JWB and GAV were funded by the NOAA Climate Program Office, and JWB was also funded by a National Science Foundation Graduate Research Fellowship (DGE 1148900). Hiroyuki Murakami, Tom Delworth, Isaac Held, Chris Milly, Bill Boos, and Kerry Emanuel provided useful feedback at various stages of the project, and Seth Underwood, William Cooke, and Sergey Malyshev provided critical technical support. Two anonymous reviewers also provided thoughtful feedback which greatly improved this work. The AM2.1 simulation data was supplied by Ho-Hsuan Wei. The calculation of tropical cyclone genesis potential was significantly aided by scripts provided by Hiroyuki Murakami, for which the fortran subroutine made available online by Kerry Emanuel was used (see https://emanuel.mit.edu/products). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the participating climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Wilson Baldwin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldwin, J.W., Vecchi, G.A. & Bordoni, S. The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones. Clim Dyn 53, 805–824 (2019). https://doi.org/10.1007/s00382-019-04615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04615-5

Keywords

Navigation