Skip to main content

Advertisement

Log in

Moisture flux adjustments in RegCM4 for improved simulation of Indian summer monsoon precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The complexity of the Indian summer monsoon precipitation makes it’s prediction a challenging task as it is not only influenced by the large-scale flows but also by the micro-scale features. In a dynamical model, precipitation is resulted from the formation of clouds. The cloud formation and its processes occur at a micro scale. Current state-of-the-art dynamical models lack proper representation of the cloud processes, particularly at high resolutions for which the cloud processes are parameterized, thereby poorly resolving the precipitation. This study aims at examining the impact of the cloud parameters on the simulation of Indian summer monsoon precipitation in Regional Climate Model version 4 (RegCM4). The autoconversion coefficient which determines the conversion of cloud water into precipitation in the Explicit Moisture Convergence scheme is adjusted in the RegCM4. The impact of autoconversion is experimented with ten different values and it is found that it has a significant effect on the simulation of precipitation during summer monsoon season. The experiments are conducted by changing autoconversion from 1.5 × 10−4 to 7.5 × 10−4/s along with the default value of 2.5 × 10−4/s. On changing the autoconversion values from 60 to 300% of the default value, the precipitation pattern improves over most parts of India. The model simulates the rainfall better when the autoconversion coefficient is changed to 7.5 × 10−4/s. With the best outcome with the adjusted autoconversion and control configuration, the model is simulated for seventeen monsoon seasons and the analyses of RegCM4 simulated vertically integrated moisture transport, convective available potential energy and atmospheric moisture budget suggest that the model efficacy is enhanced in higher autoconversion value than the control one. Statistical evaluations using bias, correlation coefficients, comprehensive rating matrices and skill score confirm the suitability of higher autoconversion rate for summer monsoon simulations. The model with adjusted autoconversion coefficient (at 7.5 × 10−4/s) has improved the representation of seasonal precipitation distribution and its year-to-year variation including other derived features. The rainfall pattern is improved over North West India and North East India especially, the monsoon core regions. The mean seasonal rainfall is in phase 94% of the time with the modeler-adjusted moisture as compared to 82% in the control in the long term simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ali S, Dan L, Fu C et al (2015) Performance of convective parameterization schemes in Asia using RegCM: simulations in three typical regions for the period 1998–2002. Adv Atmos Sci 32:715. https://doi.org/10.1007/s00376-014-4158-4

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701. https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2

    Article  Google Scholar 

  • Badr HS, Zaitchik BF, Guikema SD (2014) Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel. J Appl Meteorol Climatol 53(3):614–636

    Article  Google Scholar 

  • Baker MB (1993) Variability in concentrations of CCN in the marine cloud-top boundary layer. Tellus 45B:458–472

    Article  Google Scholar 

  • Barker HW, Cole JNS, Li J, von Salzen K (2016) A parametrization of 3-D subgrid-scale clouds for conventional GCMs: assessment using A-Train satellite data and solar radiative transfer characteristics. J Adv Model Earth Syst 8:566–597. https://doi.org/10.1002/2015MS000601

    Article  Google Scholar 

  • Beheng KD (1994) A parameterization of warm cloud microphysical conversion processes. Atmos Res 33:193–206

    Article  Google Scholar 

  • Berry EX (1967) Cloud drop growth by coalescence. J Atmos Sci 24:688–701

    Article  Google Scholar 

  • Berry EX (1968) Modification of the warm rain process. In: Proceedings First Conference on Weather Modification, AMS, 1968

  • Berry EX, Reinhardt RL (1974a) An analysis of cloud drop growth by collection. Part I. Double distributions. J Atmos Sci 31:1814–1824

    Article  Google Scholar 

  • Berry EX, Reinhardt RL (1974b) An analysis of cloud drop growth by collection. Part II. Single initial distributions. J Atmos Sci 31:1825–1831

    Article  Google Scholar 

  • Bhowmik SKR, Sen Roy S, Kundu PK (2008) Analysis of large-scale conditions associated with convection over the Indian monsoon region. Int J Climatol 28:797–821. https://doi.org/10.1002/joc.1567

    Article  Google Scholar 

  • Bollasina MA (2014) Hydrology: Probing the monsoon pulse. Nat Clim Change 4:422–423

    Article  Google Scholar 

  • Boucher O, LeTreut H, Baker MB (1995) Precipitation and radiation modeling in a general circulation model: introduction of cloud microphysical processes. J. Geophys Res, 100:16395–16414

    Article  Google Scholar 

  • Cahalan RF, Ridgway W, Wiscombe WJ, Bell TL, Snider JB (1994) The albedo of fractal stratocumulus clouds. J Atmos Sci 51:2434–2455

    Article  Google Scholar 

  • Cairns B, Lacis AA, Carlson BE (2000) Absorption within inhomogeneous clouds and its parameterization in general circulation models. J Atmos Sci 57:700–714

    Article  Google Scholar 

  • Davis A, Gabriel P, Lovejoy S, Schertzer D, Austin G (1990) Discrete angle radiative transfer—Part III: numerical results and applications. J Geophys Res 95:11,729–711,742

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Devanand A, Roxy MK, Ghosh S (2018) Coupled land-atmosphere regional model reduces dry bias in Indian summer monsoon rainfall simulated by CFSv2. Geophys Res Lett 45:2476–2486. https://doi.org/10.1002/2018GL077218

    Article  Google Scholar 

  • Economic Survey 2017-18 (2018) Ministry of finance of the government of India climate, climate change and agriculture. In: Ministry of finance, Chapter 6, New Delhi

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Emanuel KA, Neelin DJ, Bretherton CS (1994) On large-scale circulations in convecting atmospheres. QJR Meteorol Soc 120:1111–1143. https://doi.org/10.1002/qj.49712051902

    Article  Google Scholar 

  • Fasullo J, Webster PJ (2003) A hydrological definition of Indian monsoon onset and withdrawal. J Clim 16(14):3200–3211

    Article  Google Scholar 

  • Ghosh S, Bhatla R, Mall RK et al (2018) Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2432-6

    Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804. https://doi.org/10.1029/2010GL043712

    Article  Google Scholar 

  • Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:RG4003. https://doi.org/10.1029/2012RG000389

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352. https://doi.org/10.1029/98JD02072

    Article  Google Scholar 

  • Giorgi F, Shields C (1999) Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res 104:6353–6375

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X et al (2012) RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grabowski WW (1998) Toward cloud resolving modeling of largescale tropical circulations: a simple cloud microphysics parameterization. J Atmos Sci 55:3283–3298

    Article  Google Scholar 

  • Grabowski WW (2001) Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J Atmos Sci 58:978–997. https://doi.org/10.1175/1520-0469(2001)058%3C0978:CCPWTL%3E2.0.CO;2

    Article  Google Scholar 

  • Grabowski W, Wu X, Moncrieff MW (1996) Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part I: two dimensional experiments. J Atmos Sci 53:3684–3709

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation penn state/NCAR Mesoscale Model (MM5)

  • Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Im E-S et al (2010) Validation of a high resolution regional climate model for the Alpine region and effects of a subgrid-scale topography and land use representation. J Clim. https://doi.org/10.1175/2009JCLI3262.1

    Google Scholar 

  • Jain S, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Curr Sci 102(1):37–49. http://www.jstor.org/stable/24080385

  • Jiang ZH, Li W, Xu JJ, Li L (2015) Extreme precipitation indices over China in CMIP5 models. Part I: model evaluation. J Clim 28(21):8603–8619

    Article  Google Scholar 

  • Kessler E (1969) On the Distribution and Continuity of Water Substance in Atmospheric Circulations. In: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteorological Monographs, vol 10

  • Khairoutdinov M, Kogan Y (2000) A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon Weather Rev 128:229–243

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420 + STR, NCAR, Boulder

    Google Scholar 

  • Kolusu S, Prasanna V, Preethi B (2014) Simulation of Indian summer monsoon intra-seasonal oscillations using WRF regional atmospheric model. Int J Earth Atmos Sci 1:35–53

    Google Scholar 

  • Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621,. https://doi.org/10.1175/JCLI-D-14-00585.1

    Article  Google Scholar 

  • Liou KN, Ou SC (1989) The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J Geophys Res 94:8599–8607

    Article  Google Scholar 

  • Liu Y, Daum PH (2004) Parameterization of the autoconversion process. part I: Analytical formulation of the Kessler-type parameterizations. J Atmos Sci 61:1539–1548

    Article  Google Scholar 

  • Liu Y, Daum PH, McGraw R (2004) An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys Res Lett 31:L06121. https://doi.org/10.1029/2003GL019117

    Google Scholar 

  • Liu Y, Daum PH, McGraw R (2005) Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys Res Lett 32:L11811. https://doi.org/10.1029/2005GL022636

    Article  Google Scholar 

  • Liu Y, Daum PH, McGraw R (2006a) Parameterization of the autoconversion process. part II: Generalization of Sundqvist-type parameterizations. J Atmos Sci 63:1103–1109

    Article  Google Scholar 

  • Liu Y, Daum PH, McGraw R, Miller M (2006b) Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process. Geophys Res Lett 33:L11804. https://doi.org/10.1029/2005GL025500

    Article  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM GCM. J Geophys Res 102:13685–613700

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR Data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Maity S, Satyanarayana ANV, Mandal M, Nayak S (2017) Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model. Atmos Res 197:21–41. https://doi.org/10.1016/j.atmosres.2017.06.023

    Article  Google Scholar 

  • Manton MJ, Cotton WR (1977) Formulation of approximate equations for modeling moist deep convection on the mesoscale. Atmospheric science paper, no. 266

  • Maurya RKS, Sinha P, Mohanty MR, Mohanty, Mohanty UC (2017) Coupling of community land model with RegCM4 for Indian summer monsoon simulation. Pure Appl Geophys 174:4251–4270. https://doi.org/10.1007/s00024-017-1641-8

    Article  Google Scholar 

  • Maurya RKS, Sinha P, Mohanty MR, Mohanty UC (2018) RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmos Res 210:15–33

    Article  Google Scholar 

  • Michibata T, Takemura T (2015) Evaluation of autoconversion schemes in a single model framework with satellite observations. J Geophys Res Atmos 120:9570–9590. https://doi.org/10.1002/2015JD023818

    Article  Google Scholar 

  • Misra V, Mishra A, Bhardwaj A (2018) Simulation of the intraseasonal variations of the Indian summer monsoon in a regional coupled ocean–atmosphere model. J Clim 31:3167–3185. https://doi.org/10.1175/JCLI-D-17-0434.1

    Article  Google Scholar 

  • Mohanty UC, Rao MM, Sinha P et al (2018) Evaluation of performance of seasonal precipitation prediction at regional scale over India. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2421-9

    Google Scholar 

  • Molinari J, Dudek M (1986) Implicit versus explicit convective heating in numerical weather prediction models. Mon Weather Rev 114:1822–1831

    Article  Google Scholar 

  • Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120(2):326–344

    Article  Google Scholar 

  • Moncrieff MW, Miller MJ (1976) The dynamics and simulation of tropical cumulonimbus and squall lines. Q J R Meteorol Soc 102(432):373–394

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB et al (2013) Technical description of version 4.5 of the community land model (CLM). NCAR technical note NCAR/TN-503 + STR. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Pai DS, Sridhar L, Badwaik MR, Rajeevan M (2014) Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Clim Dyn. https://doi.org/10.1007/s00382-014-2307-1

    Google Scholar 

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1410. https://doi.org/10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  • Parthasarathy B, Rupa Kumar K, Munot AA (1996) Homogeneous regional summer monsoon rainfall over India: interannual variability and teleconnections. Indian Institute of Tropical Meteorology

  • Pathak A, Ghosh S, Kumar P (2014) Precipitation Recycling in the Indian Subcontinent during Summer Monsoon. J Hydrometeorol 15:2050–2066,. https://doi.org/10.1175/JHM-D-13-0172.1

    Article  Google Scholar 

  • Pattnayak KC, Panda SK, Saraswat V et al (2018) Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain. Clim Dyn 50:3049. https://doi.org/10.1007/s00382-017-3792-9

    Article  Google Scholar 

  • Petch JC (2006) Sensitivity studies of developing convection in a cloud-resolving model. QJR Meteorol Soc 132:345–358. https://doi.org/10.1256/qj.05.71

    Article  Google Scholar 

  • Phillips NA (1956) The general circulation of the atmosphere: a numerical experiment. Q J R Meteorol Soc 82(352):123–154. https://doi.org/10.1002/qj.49708235202 (Bibcode:1956QJRMS..82..123P)

    Article  Google Scholar 

  • Raju PV, Bhatla R, Almazroui M, Assiri M (2015) Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM-4.3. Int J Climatol 35:4695–4706. https://doi.org/10.1002/joc.4317

    Article  Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564,. https://doi.org/10.1175/BAMS-84-11-1547

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. https://doi.org/10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rotstayn LD (2000) On the “tuning” of autoconversion parameterizations in climate models. J Geophys Res 105(D12):15495–15507. https://doi.org/10.1029/2000JD900129

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. https://doi.org/10.1002/wcc.8

    Article  Google Scholar 

  • Seifert A, Beheng KD (2001) A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos Res 59–60:265–281

    Article  Google Scholar 

  • Simmons AJ, Hollingsworth A (2002) Some aspects of the improvement in skill of numerical weather prediction. QJR Meteorol Soc 128:647–677. https://doi.org/10.1256/003590002321042135

    Article  Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Dash SK, Kumari S (2013) Sensitivity of the GCM driven summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. Theor Appl Climatol 112:285–306. https://doi.org/10.1007/s00704-012-0728-5

    Article  Google Scholar 

  • Sinha P, Mohanty UC, Kar SC et al (2014) Role of the Himalayan orography in simulation of the Indian summer monsoon using RegCM3. Pure Appl Geophys 171:1385. https://doi.org/10.1007/s00024-013-0675-9

    Article  Google Scholar 

  • Sinha P, Maurya RKS, Mohanty MR, Mohanty UC (2019) Inter-comparison and evaluation of mixed-convection schemes in RegCM4 for Indian summer monsoon simulation. Atmos Res 215:239–252

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2

    Article  Google Scholar 

  • Small EE, Giorgi F, Sloan LC (1999) Regional climate model simulation of precipitation in Central Asia: mean and interannual variability. J Geophys Res 104:6563–6582

    Article  Google Scholar 

  • Stensrud DJ (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge, pp. 12–14. ISBN 978-0-521-86540-1

    Book  Google Scholar 

  • Stephens GL (1988) Radiative transfer through arbitrary shaped optical media. Part II: group theory and simple closures. J Atmos Sci 45:1837–1848

    Article  Google Scholar 

  • Sundqvist H (1988) Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. In: Schlesinger ME (ed) Physically-based modelling and simulation of climate and climatic change, vol 243. Springer, Dordrecht (NATO ASI Series (Series C: Mathematical and Physical Sciences)

    Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657. https://doi.org/10.1175/1520-0493(1989)117%3C1641:CACPSW%3E2.0.CO;2

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. https://doi.org/10.1029/2000JD900719 (Crossref)

    Article  Google Scholar 

  • Torma C, Coppola E, Giorgi F, Bartholy J, Pongrácz R (2011) Validation of a high resolution version of the regional climate model RegCM3 over the Carpathian Basin. J Hydrometeorol 12(1):84–100

    Article  Google Scholar 

  • Tripoli GJ, Cotton WR (1980) A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl Meteorol 19:1037–1063, https://doi.org/10.1175/15200450(1980)019%3C1037:ANIOSF%3E2.0.CO2

    Article  Google Scholar 

  • Umakanth U, Kesarkar AP (2017) Performance of evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon. Clim Dyn. https://doi.org/10.1007/s00382-017-3827-2

    Google Scholar 

  • Umakanth U, Kesarkar AP, Raju A, Rao S (2015) Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics. Clim Dyn. https://doi.org/10.1007/s00382-015-2878-5

    Google Scholar 

  • Webb M, Senior C, Bony S et al (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905. https://doi.org/10.1007/s003820100157

    Article  Google Scholar 

  • Webster PJ, Moore A, Loschnigg J, Leban M (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548. https://doi.org/10.1175/1520-0493(1997)125%3C0527:TRDOEM%3E2.0.CO;2

    Article  Google Scholar 

  • Wilks DS, Hamill TM (1995) Potential economic value of ensemble-based surface weather forecasts. Mon Weather Rev 123:3565–3575, https://doi.org/10.1175/1520-0493(1995)123%3C3565:PEVOEB%3E2.0.CO;2

    Article  Google Scholar 

  • Williams E, Renmo N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zhang J, Lohmann U, Lin B (2002) A new statistically based autoconversion rate parameterization for use in large-scale models. J Geophys Res 107(D24):4750. https://doi.org/10.1029/2001JD001484

    Article  Google Scholar 

  • Ziegler CL (1985) Retrieval of thermal and microphysical variables in observed convective storms. part I: model development and preliminary testing. J Atmos Sci 42:1487–1509

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support given by the Department of Agriculture and Farmer Welfare (DAC&FW), Government of India, and University Grants Commission (UGC) to carry out the present research work. The authors acknowledge ICTP for providing the RegCM4 model source code and required input datasets through the website at http://clima-dods.ictp.it/regcm4/. The authors sincerely thank for European Centre for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis at 1.5° × 1.5° data provided by http://clima-dods.ictp.it/regcm4/EIN15/. The authors are grateful to India Meteorological Department (IMD) for providing high spatial resolution daily precipitation data at 0.25° × 0.25° resolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sinha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, M.R., Sinha, P., Maurya, R.K.S. et al. Moisture flux adjustments in RegCM4 for improved simulation of Indian summer monsoon precipitation. Clim Dyn 52, 7049–7069 (2019). https://doi.org/10.1007/s00382-018-4564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4564-x

Keywords

Navigation