Skip to main content

Advertisement

Log in

An effective drift correction for dynamical downscaling of decadal global climate predictions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161

    Article  Google Scholar 

  • Boer GJ (2011) Decadal potential predictability of twenty-first century climate. Clim Dyn 36:1119–1133

    Article  Google Scholar 

  • Branstator G, Teng H (2012) Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophys Res Lett. https://doi.org/10.1029/2012GL051974

    Google Scholar 

  • Choudhury D, Sharma A, Sen Gupta A, Mehrotra R, Sivakumar B (2016) Sampling biases in CMIP5 decadal forecasts. J Geophys Res 121:3435–3445

    Article  Google Scholar 

  • Compo GP, Whitacker JS, Sardesmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ǿ, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011), The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett. https://doi.org/10.1029/2012GL053354

    Google Scholar 

  • Danforth CM, Kalnay E (2008) Impact of online empirical model correction on nonlinear error growth. Geophys Res Lett. https://doi.org/10.1029/2008GL036239

    Google Scholar 

  • Diaconescu EP, Laprise R, Sushama L (2007) The impact of lateral boundary data errors on the simulated climate of a nested regional climate model. Clim Dyn 28:333–350

    Article  Google Scholar 

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Gárcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodriguez LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715

    Article  Google Scholar 

  • Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38:L14701. https://doi.org/10.1029/2011GL047949

    Article  Google Scholar 

  • Fuċkar NS, Volpi D, Guemas V, Doblas-Reyes FJ (2014) A posteriori adjustment of near-term climate predictions: accounting for the drift dependence on the initial conditions. Geophys Res Lett 41:5200–5207

    Article  Google Scholar 

  • Garcia-Serrano J, Doblas Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040

    Article  Google Scholar 

  • Garcia-Serrano J, Guemas V, Doblas Reyes FJ (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555

    Article  Google Scholar 

  • Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic ocean variability on seasonal to decadal time scales. Clim Dyn 40:2311–2330

    Article  Google Scholar 

  • Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes FJ, Lienert F, Soufflet Y, Du H (2012) Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res 117:D20111. https://doi.org/10.1029/2012JD018004

    Article  Google Scholar 

  • Hawkins E, Dong B, Robson J, Sutton R (2014) The interpretation and use of biases in decadal climate predictions. J Clim 27:2931–2947

    Article  Google Scholar 

  • Hawkins E, Smith RS, Gregory JM, Stainforth DA (2016) Irreducible uncertainty in near-term projections. Clim Dyn 46:3807–3819

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. https://doi.org/10.1029/2008JD10201

    Article  Google Scholar 

  • Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett 40:1794–1798

    Article  Google Scholar 

  • ICPO (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office, CLIVAR Publication Series, No. 150, p 6

  • IPCC (2013) Climate change 2013, the physical science basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Jia L, DelSole T (2012) Multi-year predictability of temperature and precipitation in multiple climate models. Geophys Res Lett 39:L17707. https://doi.org/10.1029/2012GL052778

    Article  Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2015) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  • Kharin VV, Boer GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012) Statistical adjustment of decadal predictions in a changing climate. Geophys Res Lett 39:L19705. https://doi.org/10.1029/2012GL052647

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal Hindcasts. Geophys Res Lett 39:L10701. https://doi.org/10.1029/2012GL051644

    Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett. https://doi.org/10.1029/2006GL026242

    Google Scholar 

  • Knight JR et al (2014) Predictions of climate several years ahead using an improved decadal prediction system. J Clim 27:7550–7567

    Article  Google Scholar 

  • Kröger J, Pohlmann H, Sienz F, Marotzke J, Baehr J, Köhl A, Modali K, Polkova I, Stammer D, Vamborg F, Müller WA (2017) Full-field initialized decadal predictions with the MPI earth system model: an initial shock in the North Atlantic. Clim Dyn. https://doi.org/10.1007/s00382-017-4030-1

    Google Scholar 

  • Kruschke T, Rust HW, Kadow C, Müller WA, Pohlmann H, Leckebusch GC, Ulbrich U (2015) Probabilistic evaluation of decadal prediction skill regarding northern hemisphere winter storms. Meteorol Z. https://doi.org/10.1127/metz/2015/0641

    Google Scholar 

  • Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41:2393–2409

    Article  Google Scholar 

  • Marotzke J et al (2016) MiKlip—a national research project on decadal climate prediction. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-15-00184.1

    Google Scholar 

  • Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012a) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523

    Article  Google Scholar 

  • Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012b) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 335:76–79

    Article  Google Scholar 

  • Meehl GA, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970 s shift and early 2000s hiatus and predictions for 2016–2035. Geophys Res Lett 41:1711–1716

    Article  Google Scholar 

  • Meehl GA, Goddard L, Murphy J, Stouffer RS, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction—can it be skilful?. Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  • Mehta VM, Wang H, Mendoza K (2013) Decadal predictability of tropical ocean basin average and global average sea surface temperatures in CMIP5 experiments with the HadCM3, GFDL-CM2.1, NCAR-CCSM4, and MIROC5 global Earth system models. Geophys Res Lett 40:2807–2812

    Article  Google Scholar 

  • Mieruch S, Feldmann H, Schädler G, Lenz C-J, Kothe S, Kottmeier C (2014) The regional MiKlip decadal forecast ensemble for Europe: the added value of dynamical downscaling. Geosci Model Dev 7:2983–2999

    Article  Google Scholar 

  • Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch J-S, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39:L22707. https://doi.org/10.1029/2012GL053326

    Google Scholar 

  • Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41:2100–2107

    Article  Google Scholar 

  • Müller V, Pohlmann H, Matei D, Marotzke J, Müller WA, Baehr J (2016) Hindcast skill fort he Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems. Clim Dyn. https://doi.org/10.1007/s00382-016-3482-z

    Google Scholar 

  • Murphy J, Kattsov V, Keenlyside N, Kimoto M, Meehl G, Mehta V, Pohlmann H, Scaife A, Smith D (2010) Towards prediction of decadal climate variability and change. Proc Environ Sci 1:287–304

    Article  Google Scholar 

  • Narapusetty B, Stan C, Kumar A (2014) Bias correction methods for decadal sea-surface temperature forecasts. Tellus A 66:23681

    Article  Google Scholar 

  • Paeth H (2011) Postprocessing of simulated precipitation for impact studies in West Africa—Part I: model output statistics for monthly data. Clim Dyn 36:1321–1336

    Article  Google Scholar 

  • Paeth H, Latif M, Hense A (2003) Global SST influence on 20th century NAO variability. Clim Dyn 21:63–75

    Article  Google Scholar 

  • Paeth H et al (2017) Decadal and multi-year predictability of the West African monsoon and the role of dynamical downscaling. Meteorol Z. https://doi.org/10.1127/metz/2017/0811

    Google Scholar 

  • Panitz H-J, Fosser G, Sasse R, Sedlmeier K, Mieruch S, Breil M, Feldmann H, Schädler G (2014) High resolution climate modelling with the CCLM regional model. In: High performance computing in science and engineering 13. https://doi.org/10.1007/978-3-319-02165-2_35

  • Pattantyús-Ábrahám M, Kadow C, Illing S, Müller W, Pohlmann H, Steinbrecht W (2016) Bias and drift of the mid-range decadal climate prediction system (MiKlip) validated by European radiosonde data. Meteorol Z. https://doi.org/10.1127/metz/2016/0803

    Google Scholar 

  • Paxian A et al (2016) Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. J Geophys Res. https://doi.org/10.1002/2015JD024143

    Google Scholar 

  • Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40:5798–5802

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D14,4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348

    Article  Google Scholar 

  • Sansom PG, Ferro CAT, Stephenson DB, Goddard L, Mason SJ (2016) Best practices for postprocessing ensemble climate forecast. Part I: selecting appropriate recalibration methods. J Clim 29:7247–7264

    Article  Google Scholar 

  • Sen Gupta A, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models. J Clim 26:8597–8615

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Smith D et al (2013a) Real-time multi-model decadal climate predictions. Clim Dyn 41:2875–2888

    Article  Google Scholar 

  • Smith DM, Eade R, Pohlmann H (2013b) A comparison of full-field and anomaly initialization for seasonal to decadal climate predictions. Clim Dyn 41:3325–3338

    Article  Google Scholar 

  • Stevens B et al (2013) Atmospheric component of the MPI-M Earth system model: ECHAM6. J Adv Model Earth Sys 5:146–172

    Article  Google Scholar 

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484

    Book  Google Scholar 

Download references

Acknowledgements

We thank the Max-Planck Institute for Meteorology for providing the MPI-ESM decadal predictions and the EU-FP6 project ENSEMBLES and the ECA&D project for making the E-OBS 14.0 data set available. The NOAA-20C reanalysis was kindly provided by the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for Research in Environmental Sciences (CIRES). The HadISST data set has been made available by the Met Office Hadley Centre. This work was carried out in the framework of the German MiKlip project and supported by the German Minister of Education and Research (BMBF) under Grants no. 01LP1129A-F and 01LP1519A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Paeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paeth, H., Li, J., Pollinger, F. et al. An effective drift correction for dynamical downscaling of decadal global climate predictions. Clim Dyn 52, 1343–1357 (2019). https://doi.org/10.1007/s00382-018-4195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4195-2

Keywords

Navigation