Skip to main content

Advertisement

Log in

Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Characteristics of the precipitation in rainy season over the steep Himalayas and adjacent regions, including four selected sectors of the flat Gangetic Plains (FGP), foothills of the Himalayas (FHH), the steep slope of the southern Himalayas (SSSH), and the Himalayan–Tibetan Plateau tableland (HTPT), are investigated using collocated satellite datasets from the TRMM PR and VIRS at pixel level during May–August of 1998–2012. Results indicate that the rain frequency increases significantly from the FGP via FHH to the lower elevations of the SSSH (~ 2.5 km), then decreases as the elevation further increases up to the HTPT, and reaches the minimum over the HTPT. Along with such spatial variation of the rain frequency, mean rain rates (RRs) are the heaviest over the FGP (4 mm h−1) and the FHH (5.5 mm h−1), medium over the SSSH (2–4 mm h−1), and the weakest over the HTPT (less than 2 mm h−1). More than 60% of precipitation over the FGP, FHH, and HTPT is produced by ice-phase topped clouds, while more than 70% over the SSSH is from mixed-phase topped clouds.

Analysis suggests that the highest rain frequency over the SSSH in rainy season may be caused by a strong upward motion over the SSSH as warm moist air monsoon flow interacting with the terrain of the Himalayas, while the heaviest RR over the FHH may result from low-level convergence where the air flow is blocked by the SSSH. The elevation and relief effects have linear relationships with precipitation over the south sub-region of the SSSH, which indicates that both effects play important roles on precipitation over complex plateau topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alcala CM, Dessler AE (2002) Observations of deep convection in the tropics using the tropical rainfall measuring mission (TRMM) precipitation radar. J Geophys Res Atmos 107:4792. https://doi.org/10.1029/2002JD002457

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, Colorado, p 19

    Google Scholar 

  • Anders AM, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen J (2006) Spatial patterns of precipitation and topography in the Himalaya. Geol Soc Am Spec Pap 398:39–53. https://doi.org/10.1130/2006.2398(03)

    Google Scholar 

  • Arkin PA, Xie PP (1994) The global precipitation climatology project: first algorithm intercomparison project. BAMS 75(3):401–419

    Article  Google Scholar 

  • Barros AP, Lang TJ (2003) Monitoring the monsoon in the Himalayas: observations in central Nepal, June 2001. Mon Weather Rev 131(7):1408–1427

    Article  Google Scholar 

  • Barros AP, Joshi M, Putkonen J, Burbank DW (2000) A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys Res Lett 27(22):3683–3686. https://doi.org/10.1029/2000gl011827

    Article  Google Scholar 

  • Barros AP, Kim G, Williams E, Nesbitt SW (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci 4(1):29–51

    Article  Google Scholar 

  • Bhatt BC, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon Weather Rev 133(1):149–165

    Article  Google Scholar 

  • Bhatt BC, Nakamura K (2006) A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas. J Geophys Res Atmos 111:D02115

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res Earth Surf. https://doi.org/10.1029/2009jf001426

    Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222

    Article  Google Scholar 

  • Braga R. Vila DA (2014) Investigating the ice water path in convective cloud life cycles to improve passive microwave rainfall retrievals. J Hydrometeorol 15(4):1486–1497

    Article  Google Scholar 

  • Chen G, Sha W, Iwasaki T, Ueno K (2012) Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements. J Geophys Res Atmos. https://doi.org/10.1016/j.atmosres.2015.09.017

    Google Scholar 

  • Chen F, Fu Y, Liu P, Yang Y (2016) Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos Res 169:113–126

    Article  Google Scholar 

  • Chow KC, Chan JCL (2009) Diurnal variations of circulation and precipitation in the vicinity of the Tibetan Plateau in early summer. Clim Dyn 32(1):55–73

    Article  Google Scholar 

  • Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24(7–8):793–807

    Article  Google Scholar 

  • Feng S, Fu Y, Xiao Q (2011) Is the tropopause higher over the Tibetan Plateau? Observational evidence from constellation observing system for meteorology, ionosphere, and climate (COSMIC) data. J Geophys Res Atmos. https://doi.org/10.1029/2011jd016140

    Google Scholar 

  • Flohn H (1968) Contributions to a meteorology of the Tibetan highlands. atmospheric science paper; no. 130. Colorado State University, Fort Collins, p. 120

    Google Scholar 

  • Fu YF, Liu G (2003) Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI. J METEOROL SOC JPN Ser II 81(6):1353–1369

    Article  Google Scholar 

  • Fu YF, Liu G (2007) Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J Appl Meteorol Clim 46(5):667–672

    Article  Google Scholar 

  • Fu YF, Qin F (2014) Summer daytime precipitation in ice, mixed and water phase as viewed by PR and VIRS in tropics and subtropics. Remote sensing of the atmosphere, clouds, and Precipitation V. In: Eastwood IM, Song Y, Peng Z (eds) Proc. of SPIE, vol. 9259, 925906 © 2014 SPIE CCC code: 0277-786X/14/$18. https://doi.org/10.1117/12.2069128 (Proc. of SPIE Vol. 9259 925906-1 ~ 11)

  • Fu YF, Liu G, Wu G, Yu R, Xu Y, Wang Y, Li R, Liu Q (2006) Tower mast of precipitation over the central Tibetan Plateau summer. Geophys Res Lett. https://doi.org/10.1029/2005gl024713

    Google Scholar 

  • Fu YF, Zhang AM, Liu Y, Zheng YY, Hu YF, Feng S, Cao AQ (2008) Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM Precipitation Radar. Acta Meteorol Sin 66(5):730–746 (Chinese)

    Google Scholar 

  • Fu YF, Liu P, Liu Q, Ma M, Sun L, Wang Y (2011) Climatological characteristics of VIRS channels for precipitating cloud in summer over the tropics and subtropics. J Atmos Environ Opt 6(2):129–140 (Chinese)

    Google Scholar 

  • Fu YF, Cao AQ, Li TY, Feng S, Zheng YY, Liu Y, Zhang AM (2012) Climate characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation on radar. Acta Meteorol Sin 70(3):436–451 (Chinese)

    Google Scholar 

  • Fujinami H, Nomura S, Yasunari T (2005) Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA 1:49–52

    Article  Google Scholar 

  • Geerts B, Dejene T (2005) Regional and diurnal variability of the vertical structure of precipitation systems in Africa based on spaceborne radar data. J Clim 18:893–916

    Article  Google Scholar 

  • Hirose M, Nakamura K (2002) Spatial and seasonal variation of rain profiles over asia observed by spaceborne precipitation radar. J Clim 15:3443–3458

    Article  Google Scholar 

  • Hirose M, Nakamura K (2004) Spatiotemporal variation of the vertical gradient of rainfall rate observed by the TRMM precipitation radar. J Clim 17:3378–3397

    Article  Google Scholar 

  • Hirose M, Nakamura K (2005). Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM precipitation radar. J Geophys Res Atmos. https://doi.org/10.1029/2004JD004815

    Google Scholar 

  • Houze RA (2014) Cloud dynamics. Academic press, Waltham

    Google Scholar 

  • Houze RA, Wilton DC, Smull BF (2007) Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Q J Roy Meteor Soc 33(627):1389–1411

    Google Scholar 

  • Houze AR, Rasmussen KL, Medina S, Brodzik SR, Romatschke U (2011) Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull Am Meteorol Soc 92(3):291–298

    Article  Google Scholar 

  • Hsu HH, Liu X (2003) Relationship between the Tibetan Plateau heating and east Asian summer monsoon rainfall. Geophys Res Lett 30(20):2066. https://doi.org/10.1029/2003GL017909

    Article  Google Scholar 

  • Jiang J, Xiang X (1996) Spatial and temporal distributions of severe mesoscale convective systems on Tibetan Plateau in summer (in Chinese). J Appl Meteorol Sci 7:474–478

    Google Scholar 

  • Kelley OA, Stout J, Summers M, Zipser EJ (2010) Do the tallest convective cells over the tropical ocean have slow updrafts. Mon Weather Rev 138(5):1651–1672

    Article  Google Scholar 

  • Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21(11):2680–2696

    Article  Google Scholar 

  • King MD, Kaufman YJ, Menzel WP, Tanre D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometers (MODIS). IEEE Trans Geos Remote Sens 30:2–27

    Article  Google Scholar 

  • Liu GS, Fu YF (2001) The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J METEOROL SOC JPN Ser. II 79(1):131–143

    Article  Google Scholar 

  • Liu Q, Fu Y (2007) An examination of summer precipitation over Asia based on TRMM/TMI. Sci China Ser D Earth Sci 50(3):430–441

    Article  Google Scholar 

  • Liu C, Zipser EJ (2005) Global distribution of convection penetrating the tropical tropopause. J Geophys Res 110:D23104. https://doi.org/10.1029/2005JD006063

    Article  Google Scholar 

  • Liu C, Zipser E, Nesbitt SW (2007) Global distribution of tropical deep convection: different perspectives using infrared and radar as the primary data source. J Clima 20(3):489–503

    Article  Google Scholar 

  • Liu X, Bai A, Liu C (2009) Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ Res Lett 4(4):045203

    Article  Google Scholar 

  • Liu L, Zheng J, Ruan Z, Cui Z, Hu Z, Wu S, Dai G, Wu Y (2015) Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J Meteorol Res 29:546–561

    Article  Google Scholar 

  • Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J Atmos Sci 47:1878–1893

    Article  Google Scholar 

  • Pan X, Fu YF (2015) Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over the Tibetan Plateau. Plateau Meteorol 34(5):1182–1189 (Chinese)

    Google Scholar 

  • Park M, Randel WJ, Gettelman A, Massie ST, Jiang JH (2007) Transport above the Asian summer monsoon anticyclone inferred from aura microwave limb sounder tracers. J Geophys Res 112:D16309. https://doi.org/10.1029/2006JD008294

    Article  Google Scholar 

  • Platnick S, Twomey S (1994) Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer. J Appl Meteorol 33:334–347

    Article  Google Scholar 

  • Qian Z, Zhang S, Shan F (1984) Analysis on convective activities over the Tibet Plateau in summer of 1979 (in Chinese), in the collectives of the Qinghai-Xizang Plateau meteorological experiment in 1979, vol 1. Sci. Press, Beijing, pp 243–257

    Google Scholar 

  • Qie XS, Wu X, Yuan T, Bian J, Lu D (2014) Comprehensive pattern of deep convective systems over the Tibetan Plateau–South asian monsoon region based on TRMM Data. J Clim 27(17):6612–6626

    Article  Google Scholar 

  • Romatschke U, Houze RA (2011) Characteristics of precipitating convective systems in the South Asian monsoon. J Hydrometeoro 12(1):3–26

    Article  Google Scholar 

  • Romatschke U, Medina S, Houze RA (2010) Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Clim 23(2):419–439

    Article  Google Scholar 

  • Schumacher C, Houze RA (2003) Stratiform rain in the tropics as seen by the TRMM precipitation radar. J Clim 16(11):1739–1756

    Article  Google Scholar 

  • Shi Y, Tang M, Ma Y (1999) Linkage between the second uplifting of the Qinghai-Xizang (Tibetan) Plateau and the initiation of the Asian monsoon system. Sci China Ser D Earth Sci 42(3):303–312

    Article  Google Scholar 

  • Shimizu S, Ueno K, Fujii H, Yamada H, Shirooka R, Liu L (2001) Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau. J Meteorol Soc Jpn 79:435–461

    Article  Google Scholar 

  • Shrestha D, Singh P, Nakamura K (2012) Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J Geophys Res 117:D22106. https://doi.org/10.1029/2012JD018140

    Article  Google Scholar 

  • Tao SY, Ding YH (1981) Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull Am Meteorol Soc 62(1):23–30

    Article  Google Scholar 

  • Uyeda H, Yamada H, Horikomi J, Shirooka R, Shimizu S, Liu L, Ueno K, Fujii H, Koike T (2001) Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J Meteorol Soc Jpn 79:463–474

    Article  Google Scholar 

  • Wang JXL, Gaffen D (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 14(13):2833–2845

    Article  Google Scholar 

  • Wang B, LinHo (2002) Rainy Season of the Asian–Pacific summer monsoon. J Clim 15(4):386–398

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett. https://doi.org/10.1029/2008gl034330

    Google Scholar 

  • Wang Z, Duan A, Wu G, Yang S (2015) Mechanism for occurrence of precipitation over the southern slope of the Tibetan Plateau without local surface heating. Int J Climatol. https://doi.org/10.1002/joc.4609

    Google Scholar 

  • Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126(4):913–927

    Article  Google Scholar 

  • Wu G, Li W, Guo H, Liu H (1997) Sensible heating-driving air pump of the Tibetan Plateau and the Asian summer monsoon (in Chinese). In: Duzheng Y (ed) Memorial volume of Professor Zhao Jiuzheng. Sci. Press, Beijing, pp 116–126

    Google Scholar 

  • Wu GX, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeor 8(4):770–789

    Article  Google Scholar 

  • Wu GX, Liu Y, He B, Bao Q, Duan A, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2. https://doi.org/10.1038/srep00404

    Google Scholar 

  • Xian T, Fu YF (2015) Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J Geophys Res Atmos 120(14):7006–7024

    Article  Google Scholar 

  • Xie SP, Xu HM, Saji NH, Wang YQ, Liu WT (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J Clim 19(14):3420–3429

    Article  Google Scholar 

  • Xu W, Zipser EJ (2011) Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J Clim 24(2):448–465

    Article  Google Scholar 

  • Xu XD, Zhou MY, Chen JY et al (2001) A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci in China (Ser D) 31(5):428–440 (Chinese)

    Google Scholar 

  • Xu XD, Tao SY, Wang JZ, Chen LS, Zhou L, Wang XR (2002) The relationship between water vapor transport features of Tibetan Plateau-monsoon “large triangle” affecting region and drought-flood abnormality of China. Acta meteorol sin 60(3):257–266 (Chinese)

    Google Scholar 

  • Xu XD, Wang YJ, Zhao TL, Yao WQ (2014a) Relationship between turbulent energy in the near-surface layer and atmospheric boundary layer thermodynamic structure over the southeastern side of Tibetan Plateau. Meteorol Mon 40(10):1165–1173 (Chinese)

    Google Scholar 

  • Xu XD, Zhao TL, Lu CG, Shi XH (2014b) Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteorol Sin 72(6):1079–1095 (Chinese)

    Google Scholar 

  • Yang YJ, Lu DR, Fu YF, Chen FJ, Wang Y (2015) Spectral characteristics of tropical anvils obtained by combining TRMM precipitation radar with visible and infrared scanner data. Pure Appl Geophys 172(6):1717–1733

    Article  Google Scholar 

  • Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on earth? Bull Am Meteorol Soc 87(8):1057–1071

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC (Grant nos. 91337213, 41230419, and 41505033, 41675041), the Third Tibetan Plateau Scientific Experiment:Observations for Boundary Layer and Troposphere (Grant no. GYHY201406001), and the Special Funds for Public Welfare of China (Grant no. GYHY201306077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Pan, X., Xian, T. et al. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Clim Dyn 51, 1971–1989 (2018). https://doi.org/10.1007/s00382-017-3992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3992-3

Keywords

Navigation