Skip to main content

Advertisement

Log in

The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using the Hadley Center HadISST dataset and the NCEP/NCAR reanalysis dataset over the winters (December–February) from 1948 to 2014, this paper investigates the connections between the first two primary components of the sea surface temperature (SST) anomalies over the North Pacific and the stratospheric sudden warmings (SSWs) in the Northern Hemisphere winter. The results show that the winter SSW duration is more correlated to the second primary component (PC2) than the first primary component (PC1). The SSW event occurs more frequently and the winter SSW duration is longer during the positive phases of PC2 than the negative phases of PC2. The analysis also reveals that there are 10–20 year oscillations in the SSW duration after 1980, which are related to the decadal variation of PC2. The positive phases of PC2 are marked by more positive Pacific–North America (PNA) and western Pacific (WP) teleconnections in the upper troposphere. Consequently, wavenumber-1 planetary waves in the upper troposphere are strengthened and the upward Eliassen–Palm fluxes (EP fluxes) in the extratropical stratosphere are enhanced. The enhanced upward EP fluxes into the stratosphere result in SSWs persisting longer. The negative phase of PC2 has the opposite effect on the SSW duration to the positive phase of PC2. Although the SST anomalies associated with PC2 are mainly driven by the atmosphere, our model simulations show that SST anomalies of PC2 are capable of producing a feedback on the PNA and the WP and modulating the variability of SSWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic press, San Diego

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Niño teleconnections to European winter. J Clim 22:4083–4096

    Article  Google Scholar 

  • Bond N, Overland J, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. doi:10.1029/2003GL018597

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño–southern oscillation on European climate. Rev Geophys 45:RG3003. doi:10.1029/2006RG000199

    Article  Google Scholar 

  • Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteor Soc 96:1913–1928. doi:10.1175/BAMS-D-13-00173.1

    Article  Google Scholar 

  • Calvo N, Garcia RR, Randel WJ, Marsh DR (2010) Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340

    Article  Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20:449–469

    Article  Google Scholar 

  • Chhak KC, Di Lorenzo E, Schneider N, Cummins PF (2009) Forcing of low-frequency ocean variability in the Northeast Pacific*. J Clim 22:1255–1276

    Article  Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res Atmos 112:D09301. doi:10.1029/2006JD007485.

    Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E (2008) North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838

    Article  Google Scholar 

  • Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765

    Article  Google Scholar 

  • Ding R, Li J, Tseng Y, Sun C, Guo Y (2015) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120(1):27–45

    Article  Google Scholar 

  • Furtado JC, Di Lorenzo E, Schneider N, Bond NA (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res Atmos 113:D18114. doi:10.1029/2008JD009920

    Article  Google Scholar 

  • Gray LJ (2003) The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys Res Lett 30:1166. doi:10.1029/2002GL016430

    Google Scholar 

  • Holton JR (1976) A semi-spectral numerical model for wave-mean flow interactions in the stratosphere: application to sudden stratospheric warmings. J Atmos Sci 33:1639–1649

    Article  Google Scholar 

  • Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829

    Article  Google Scholar 

  • Hu Y, Pan L (2009) Arctic stratospheric winter warming forced by observed SSTs. Geophys Res Lett 36(11). doi:10.1029/2009GL037832

  • Hu D, Tian W, Xie F, Shu J, Dhomse S (2014) Effects of meridional sea surface temperature gradients on the stratospheric temperature and circulation. Adv Atmos Sci 31:888–900. doi:10.1007/s00376-013-3152-6

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2011) The Arctic vortex in March 2011: a dynamical perspective. Atmos Chem Phys 11:11447–11453. doi:10.5194/acp-11-11447-2011

    Article  Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110. doi:10.1029/2012JD017819

    Article  Google Scholar 

  • Ito K, Naito Y, Yoden S (2009) Combined effects of QBO and 11-year solar cycle on the winter hemisphere in a stratosphere-troposphere coupled system. Geophys Res Lett 36:L11804. doi:10.1029/2008GL037117

    Article  Google Scholar 

  • Jadin EA, Wei K, Zyulyaeva YA, Chen W, Wang L (2010) Stratospheric wave activity and the Pacific Decadal Oscillation. J Atmos Sol-Terr Phy 72:1163–1170. doi:10.1016/j.jastp.2010.07.009

    Article  Google Scholar 

  • Kren AC, Marsh DR, Smith AK, Pilewskie P (2016) Wintertime northern hemisphere response in the stratosphere to the pacific decadal oscillation using the whole atmosphere community climate model. J Climate 29:1031–1049 doi. doi:10.1175/JCLI-D-15-0176.1

    Article  Google Scholar 

  • Krüger K, Naujokat B, Labitzke K (2005) The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: a comparison to Northern Hemisphere phenomena. J Atmos Sci 62:603–613

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Blade I, Hall N M J, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256

    Article  Google Scholar 

  • Kwon YO, Deser C (2007) North pacific decadal variability in the community climate system model version 2. J Clim 20(11):2416–2433

    Article  Google Scholar 

  • Labitzke K, Kunzel M, Broennimann S (2006) Sunspots, the QBO and the stratosphere in the North Polar Region—20 years later. Meteorol Z 15:355–363

    Article  Google Scholar 

  • Li Y, Tian W (2017) Different impact of central pacific and eastern Pacific El Niño on SSW duration. Adv Atmos Sci 34(6):771–782. doi:10.1007/s00376-017-6286-0

    Article  Google Scholar 

  • Li Y, Li J, Feng J (2012) A teleconnection between the reduction of rainfall in Southwest Western Australia and North China. J Clim 25:8444–8461

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Martius O, Polvani LM, Davies HC (2009) Blocking precursors to stratospheric sudden warming events. Geophys Res Lett 36:L14806. doi:10.1029/2009GL038776

    Article  Google Scholar 

  • Matsuno T (1970) Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J Atmos Sci 27:871–883

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494

    Article  Google Scholar 

  • Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Climate 26:2668–2682. doi:10.1175/jcli-d-12-00030.1

    Article  Google Scholar 

  • Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the North Pacific during the recent decades. Bull Am Meteor Soc 78:2215–2225

    Article  Google Scholar 

  • Naoe H, Shibata K (2010) Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J Geophys Res Atmos 115:D19102. doi:10.1029/2009JD012952

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the pacific decadal oscillation. J Clim 16:3853–3857. doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427. doi:10.1175/JCLI-D-15-0508.1

    Article  Google Scholar 

  • Nigam S (2003) Teleconnections. Encyclopedia of atmospheric sciences, Holton JR, Pyle JA, Curry JA (eds) Elsevier, pp 2243–2269

  • Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 37:L13805. doi:10.1029/2010GL043551

    Google Scholar 

  • O’Neill A (2003) Stratospheric sudden warmings. Encyclopedia of atmospheric sciences. In: Holton JR, Pyle JA, Curry JA (eds) Elsevier, pp 1342–1353

  • Pawson S, Naujokat B (1999) The cold winters of the middle 1990s in the northern lower stratosphere. J Geophys Res Atmos 104:14209–14222

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Schneider N, Saravanan R, Dommenget D, Latif M (2001) The role of ocean dynamics in producing decadal climate variability in the North Pacific. Clim Dyn 18:51–70

    Article  Google Scholar 

  • Quiroz RS (1986) The association of stratospheric warmings with tropospheric blocking. J Geophys Res 91:5277–5285

    Article  Google Scholar 

  • Rayner N, Parker DE, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783–787

    Article  Google Scholar 

  • Ren RC, Cai M, Xiang C, Wu G (2011) Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Clim Dyn 38:1345–1358. doi:10.1007/s00382-011-1137-7

    Article  Google Scholar 

  • Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El Nino as simulated by WACCM. J Clim 19:324–332

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Wang L, Chen W (2010) Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys Res Lett 37:L09707. doi:10.1029/2010GL042659

    Google Scholar 

  • Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: Polvani LM, Sobel AH, Waugh DW (eds) The stratosphere: dynamics, transport and chemistry. American Geophysical Union, Washington, DC

  • White IP, Lu H, Mitchell NJ, Phillips T (2015) Dynamical response to the QBO in the Northern Winter stratosphere: signatures in wave forcing and Eddy fluxes of potential vorticity. J Atmos Sci 72:4487–4507. doi:10.1175/JAS-D-14-0358.1

    Article  Google Scholar 

  • Woo S-H, Sung M-K, Son S-W, Kug J-S (2015) Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Clim Dyn 45:3481–3492

    Article  Google Scholar 

  • Woollings T, Charlton-Perez A, Ineson S, Marshall AG, Masato G (2010) Associations between stratospheric variability and tropospheric blocking. J Geophys Res Atmos 115:D06108. doi:10.1029/2009JD012742

    Article  Google Scholar 

  • Wu L, Liu Z (2005) North Atlantic decadal variability: air-sea coupling, oceanic memory, and potential northern hemisphere resonance. J Clim 18(2):331–349

    Article  Google Scholar 

  • Zhang J, Tian W, Wang Z, Xie F, Wang F (2015) The influence of ENSO on Northern Midlatitude ozone during the winter to spring transition. J Clim 28:4774–4793

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the groups and agencies that provided the datasets analyzed in this study. This work is supported by the National Natural Science Foundation of China (41225018, 41575038 and 41630421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshou Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tian, W., Xie, F. et al. The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events. Clim Dyn 51, 581–595 (2018). https://doi.org/10.1007/s00382-017-3942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3942-0

Keywords

Navigation