Skip to main content
Log in

Trend and recovery of the total ozone column in South America and Antarctica

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

South America is one of the most vulnerable areas to stratospheric ozone depletion; consequently, an increased amount of UV radiation reaches the Earth’s surface in this region. In this study, we analyzed the long-term trend in the total ozone column (TOC) over the southern part of the South American continent from 1980 to 2009. The database used was obtained by combining several satellite measurements of the TOC on a 1° (latitude) × 1.25° (longitude) grid. Analysis of the long-term trend was performed by applying the Theil-Sen estimator and the Mann–Kendall significance test to the deseasonalized time series. The long-term trend was also analyzed over several highly populated urban zones in the study area. Finally, multiple linear regression (MLR) modeling was used to identify and quantify the drivers of interannual variability in the TOC over the study area with a pixel-by-pixel approach. The results showed a decrease in the TOC ranging from −0.3 to −4% dec−1 from 1980 to 2009. On a decadal timescale, there is significant variability in this trend, and a decrease of more than −10% dec−1 was found at high latitudes (1980–1989). However, the trends obtained over much of the study area were not statistically significant. Considering the period from 1980 to 1995, we found a decrease in the TOC of −2.0 ± 0.6% dec−1 at latitudes below 40° S and −6.9 ± 2.0% dec−1 at latitudes above 40° S, for a 99.9% confidence level over most of the study area. Analysis of the period from 1996 to 2009 showed a statistically significant increase of 2.3 ± 0.1% dec−1 at high latitudes (> 60° S), confirming the initial TOC recovery in the Antarctic. Despite evidence for initial recovery of the TOC in some parts of the study area between 1996 and 2009, the long-term increase from September to November is not yet statistically significant. In addition, large parts of the study area and most of the urban areas continue to show a decreasing trend in the TOC. The MLR results show that at high latitudes, the main driver of interannual variability in the TOC is the total effective amount of halogens, followed by the eddy heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albinana AP, Rubio J, Sanchez F, Vila M, Figuerola N, de Carcer IA, Jaque F (2000) Ozone transport in the mid-latitudes of South America in ozone hole conditions. P Soc Photo-Opt Ins 4131:315–322

  • Anton M, Lopez M, Serrano A, Banon M, Garcia JA (2010) Diurnal variability of total ozone column over Madrid (Spain). Atmos Environ 44(24):2793–2798

    Article  Google Scholar 

  • Anton M, Bortoli D, Costa MJ, Kulkarni PS, Domingues AF, Barriopedro D, Serrano A, Silva AM (2011a) Temporal and spatial variabilities of total ozone column over Portugal. Remote Sens Environ 115(3):855–863

    Article  Google Scholar 

  • Anton M, Bortoli D, Kulkarni PS, Costa MJ, Domingues AF, Loyola D, Silva AM, Alados-Arboledas L (2011b) Long-term trends of total ozone column over the Iberian Peninsula for the period 1979–2008. Atmos Environ 45(35):6283–6290

    Article  Google Scholar 

  • Antón M, Bortoli D, Kulkarni PS, Costa MJ, Domingues AF, Loyola D (2011) Long-term trends of total ozone column over the Iberian Peninsula for the period 1979–2008. Atmos Environ 45(35):6283–6290

    Article  Google Scholar 

  • Appenzeller C, Weiss AK, Staehelin J (2000) North Atlantic Oscillation modulates total ozone winter trends. Geophys Res Lett 27:1131–1134

    Article  Google Scholar 

  • Austin J, Struthers H, Scinocca J, Plummer D, Akiyoshi H, Baumgaertner JG (2010) Chemistry-climate model simulations of spring Antarctic ozone. J Geophys Res 5(115):D00M11

    Google Scholar 

  • Baldwin M, Gray L, Dunkerton T, Hamilton K, Haynes P, Randel W, Holton J, Alexander M, Hirota I, Horinouchi T, Jones D, Kinnersley J, Marquardt C, Sato K, Takahashi M (2001) The Quasi-Biennial Oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • BAS (2012) Meteorology and Ozone Monitoring Unit—Antartic ozone data, British Antarctic Survey [Internet]. Br Antarct Surv, Available from: http://www.antarctica.ac.uk/met/jds/ozone/index.html

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55(3):301–327

    Article  Google Scholar 

  • Bodeker GE, Shiona H, Eskes H (2005) Physics Indicators of Antarctic ozone depletion. Atmos Chem Phys 5:2603–2615

    Article  Google Scholar 

  • Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q J R Meteorol Soc 75(326):351–363

    Article  Google Scholar 

  • Bronnimann S, Luterbacher J, Staehelin J, Svendby T, Hansen G, Svenoe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974

    Article  Google Scholar 

  • Carslaw D, Ropkins K (2012) Openair an R package for air quality data analysis. Environ Mod Soft 27–28:52–61

  • Casiccia C, Zamorano F (2008) Erythemal irradiance at the Magellan’s region and Antarctic ozone hole 1999–2005. Atmósfera 21(1):1–12

  • Casiccia C, Kirchhoff VWJH, Torres A (2003) Simultaneous measurements of ozone and ultraviolet radiation: spring 2000, Punta Arenas, Chile. Atmos Environ 37(68):383–389

    Article  Google Scholar 

  • Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. Dublin Philos Mag J Sci 10(64):369–83

  • Chehade W, Weber M, Burrows JP (2014) Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmos Chem Phys 14:7059–7074

    Article  Google Scholar 

  • Cionni I, Eyring V, Lamarque JF, Randel WJ, Stevenson DS, Wu F (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11(21):11267–11292

    Article  Google Scholar 

  • de Artigas MZ, de Campra PF (2010) Trends in total ozone and the effect of the equatorial zonal wind QBO. J Atmos Sol-Terr Phy 72(7–8):565–569

    Article  Google Scholar 

  • de Laat ATJ, van der ARJ, Allaart MAF, van Weele M, Benitez GC, Casiccia C (2010) Extreme sunbathing: Three weeks of small total O3 columns and high UV radiation over the southern tip of South America during the 2009 Antarctic O3 hole season. Geophys Res Lett 37(14):L14805

    Google Scholar 

  • Dobson GMB (1956) Origin and distribution of the polyatomic molecules in the atmosphere. Proc R Soc A Math Phys Eng Sci 236(1205):187–93

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression. I. Biometrika 37:409–428

    Google Scholar 

  • Fogg GE (2000) The Royal Society and the Antarctic. Notes Rec R Soc 54(1):85–98

  • Frossard L, Rieder HE, Ribatet M, Staehelin J, Maeder JA, Di Rocco S, Davison AC, Peter T (2013) On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry. Atmos Chem Phys 13:147–164

    Article  Google Scholar 

  • Fusco AC, Salby ML (1999) Interannual Variations of Total Ozone and Their Relationship to Variations of Planetary Wave Activity. J Climate 12:1619–1629

    Article  Google Scholar 

  • Geller MA, Smyshlyaev SP (2002) A model study of total ozone evolution 1979–2000—the role of individual natural and anthropogenic effects. Geophys Res Lett 29(22)

  • Godin-Beekmann S (2010) Spatial observation of the ozone layer. Comptes Rendus Geosci Academie des Sciences 342(4–5):339–348

  • Hadjinicolaou P, Pyle JA, Chipperfield MP, Kettleborough JA (1997) Effect of interannual meteorological variability on mid-latitude O3. Geophys Res Lett 24:2993–2996

    Article  Google Scholar 

  • Haklander AJ, Siegmund PC, Kelder HM (2006) Analysis of the frequency-dependent response to wave forcing in the extratropics. Atmos Chem Phys 6:4477–4481

    Article  Google Scholar 

  • Harris JM, Oltmans SJ, Bodeker GE, Stolarski R, Evans RD, Quincy DM (2003) Long-term variations in total ozone derived from Dobson and satellite data. Atmos Environ 37(23):3167–3175

    Article  Google Scholar 

  • Harris NRP, Kyrö E, Staehelin J, Brunner D, Andersen S-B, Godin-Beekmann S (2008) Ozone trends at northern mid- and high latitudes – a European perspective. Ann Geophys 26(23):1207–1220

    Article  Google Scholar 

  • Hartmann DL, M Wallace J, Limpasuvan V, Thompson D, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? P Natl Acad Sci USA 97:1412–1417

    Article  Google Scholar 

  • Hassler B, Bodeker GE, Solomon S, Young PJ (2011) Changes in the polar vortex: effects on Antarctic total ozone observations at various stations. Geophys Res Lett 38

  • Horel J, Wallace J (1981) Planetary-scale atmospheric phenomena associated with the southern oscillation. Am Meteor Soc 109:813–829

  • Iqbal M (1983) An introduction to solar radiation. An Introd Sol Radiat. Elsevier pp 59–84

  • Jain SL, Kulkarni PS, Ghude SD, Polade SD, Arya BC, Dubey PK (2008) Trend analysis of total column ozone over New Delhi, India. Mapan-J Metrol Soc I 23(2):63–69

  • Jiang X, Pawson S, Camp CD, Nielsen JE, Shia R-L, Liao T, Limpasuvan V, Yung YL (2008a) Interannual variability and trends of extratropical ozone. Part I: Northern Hemisphere. J Atmos Sci 65(10):3013–3029

    Article  Google Scholar 

  • Jiang X, Pawson S, Camp CD, Nielsen JE, Shia R-L, Liao T, Limpasuvan V, Yung YL (2008b) Interannual Variability and Trends of Extratropical Ozone. Part II: Southern Hemisphere. J Atmos Sci 65(10):3030–3041

    Article  Google Scholar 

  • Kane RP (1998b) Ozone depletion, related UVB changes and increased skin cancer incidence. Int J Climatol 18:457–472

    Article  Google Scholar 

  • Kane RP, Sahai Y, Casiccia C (1998a) Latitude dependence of the quasi-biennial oscillation and quasi-triennial oscillation characteristics of total ozone measured by TOMS. J Geophys Res-Atmos 103(D7):8477–8490

    Article  Google Scholar 

  • Kaniaru D (2007) The montreal protocol: celebrating 20 Years of environmental progress: ozone layer and climate protection. UNEP/Earthprint, p 355

  • Kanitz T, Seifert P, Ansmann A, Engelmann R, Althausen D, Casiccia C (2011) Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys Res Lett 38(17):L17802

    Article  Google Scholar 

  • Karoly D (1989) Southern hemisphere circulation features associated with El Niño-Southern oscillation events. Am Meteor Soc 12:1239–1252

  • Kiesewetter G, Sinnhuber BM, Weber M, Burrows JP (2010) Attribution of stratospheric ozone trends to chemistry and transport: a modelling study. Atmos Chem Phys 10:12073–12089

    Article  Google Scholar 

  • Kirchhoff VWJH, Casiccia CARS, Zamorano BF (1997) The ozone hole over Punta Arenas, Chile. J Geophys Res 102(D7):8945–8953. doi:10.1029/96JD03609

    Article  Google Scholar 

  • Krueger AJ, Guenther B, Fleig AJ, Heath DF, Hilsenrath E, McPeters R (1980) Satellite ozone measurements. Philos Trans R Soc A Math Phys Eng Sci 296(1418):191–204

  • Labitzke K, VanLoon H (1997) The signal of the 11-year sunspot cycle in the upper troposphere lower stratosphere. Space Sci Rev 80(3–4):393–410

  • Lee H, Smith AK (2003) Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades. J Geophys Res-Atmos 108(D2)

  • Lindfors A, Vuilleumier L (2005) Erythemal UV at Davos (Switzerland), 1926–2003, estimated using total ozone, sunshine duration, and snow depth. J Geophys Res 110(D2):D02104

    Article  Google Scholar 

  • Malanca FE (2005) Trends evolution of ozone between 1980 and 2000 at midlatitudes over the Southern Hemisphere: Decadal differences in trends. J Geophys Res 110(D5):D05102

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Climate 19:3863–3881

    Article  Google Scholar 

  • McCormack JP, Siskind DE, Hood LL (2007) Solar-QBO interaction and its impact on stratospheric ozone in a zonally averaged photochemical transport model of the middle atmosphere. J Geophys Res 112(D16109)

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalysed destruction of ozone. Nature 249(5460):810–812

    Article  Google Scholar 

  • Monreal McMahon R, Aguilar R, Valderrama V, Burt PJA (2002) An operational method for forecasting total column ozone for Punta Arenas, Chile. Meteorol Appl 9(3):327–333

  • Müller R, Grooß J, Lemmen C, Heinze D, Dameris M, Bodeker G (2008) Simple measures of ozone depletion in the polar stratosphere. Atmos Chem Phys 8:251–264

    Article  Google Scholar 

  • Munir S, Chen H, Ropkins K (2013) Quantifying temporal trends in ground level ozone concentration in the UK. Sci Total Environ 458–460:217–227

    Article  Google Scholar 

  • NASA (2012) Ozone Hole Watch, National Aeronautics and Space Administration, Goddard Space Flight Center [Internet]. [cited 2014 Nov 6]. Available from: http://ozonewatch.gsfc.nasa.gov/

  • Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res 106(D17):19999–20010. doi:10.1029/2000JD000061

    Article  Google Scholar 

  • Nicolet M (1955) The aeronomic problem of nitrogen oxides. J Atmos Terr Phys 7:152–169

    Article  Google Scholar 

  • Ningombam SS (2011) Variability of sunspot cycle QBO and total ozone over high altitude western Himalayan regions. J Atmos Sol-Terr Phy 73(16):2305–2313

    Article  Google Scholar 

  • Niu X, Frederick JE, Stein ML, Tiao GC (1992) Trends in column ozone based on TOMS data: dependence on month, latitude, and longitude. J Geophys Res 97(D13):14661–14669. doi:10.1029/92JD01392

    Article  Google Scholar 

  • Perez-Albinana A, Rubio J, Sanchez J, Vila M, Figuerola N, Aguirre de Carcer I (2000) Ozone transport in the mid-latitudes of South America in ozone hole conditions. International Society for Optics and Photonics pp 315–322

  • Randel WJ, Wu F, Stolarski R (2002) Changes in column ozone correlated with the stratospheric EP flux. J Meteorol Soc Jpn 80:849–862

    Article  Google Scholar 

  • Rieder HE, Staehelin J, Maeder J, Peter T, Ribatet M, Davison C (2010a) Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory. Atmos Chem Phys 10(20):10021–10031

    Article  Google Scholar 

  • Rieder HE, Staehelin J, Maeder J, Peter T, Ribatet M, Davison C (2010b) Extreme events in total ozone over Arosa—Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes. Atmos Chem Phys 10(20):10033–10045

    Article  Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res-Atmos 98:22987–22994

    Article  Google Scholar 

  • Shindell D, Rind D, Balachandran N, Lean J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284:305–308

    Article  Google Scholar 

  • Shiotani M (1992) Annual, Quasi-Biennial, and E1 Niño-Southern Oscillation (ENSO) Time-Scale Variations in Equatorial Total Ozone. J Geophys Res 97(D7):7625–7633

    Article  Google Scholar 

  • Sola Y, Lorente J (2010) Impact of two low ozone events on surface solar UV radiation over the northeast of Spain. Int J Climatol 31:1724–1734

    Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • SPARC (2006) SPARC Assessment of Stratospheric Aerosol Properties (ASAP). Thomason L and Peter T Eds. SPARC Report No. 4, WCRP-124, WMO/TD—No. 1295

  • Staehelin J, Thudium J, Buehler R, Volz-Thomas A, Graber W (1994) Trends in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28(1):75–87

    Article  Google Scholar 

  • Staehelin J, Renaud A, Mcpeters R, Viatte P, Hoegger B, Bugnion V (1998) Total ozone series at Arosa (Switzerland): Homogenization and data comparison. J Geophys Res 103(D5):5827–5841. doi:10.1029/97JD02402

    Article  Google Scholar 

  • Staehelin J, Harris NRP, Appenzeller C, Eberhard J (2001) Ozone trends: a review. Rev Geophys 39(2):231–290

    Article  Google Scholar 

  • Staehelin J, Vogler C, Br S (2009) The long history of ozone measurements: climatological information derived from long ozone records. Zerefos, Christos, Contopoulos, G., Skalkeas G Springer; 2009. Pp 119–131

  • Steinbrecht W, Hassler B, Claude H, Winkler P, Stolarski RS (2003) Global distribution of total ozone and lower stratospheric temperature variations. Atmos Chem Phys 3:1421–1438

    Article  Google Scholar 

  • Struthers H, Bodeker GE, Austin J, Bekki S, Cionni I, Dameris M (2009) The simulation of the Antarctic ozone hole by chemistry-climate models. Atmos Chem Phys 9:6363–6376

    Article  Google Scholar 

  • Tandon A, Attri AK (2011) Trends in total ozone column over India: 1979–2008. Atmos Environ 45(9):1648–1654

    Article  Google Scholar 

  • Toro R, Morales RGE, Canales M, Gonzales C, Leiva M (2014) Inhaled and inspired particulates in metropolitan Santiago Chile exceed air quality standards. Build Environ 79:115–123

  • UNEP (2003) Handbook for the International Treaties for the Protection of the Ozone Layer. 6th edn. The secretariat for The Vienna convention for the protection of the ozone layer and the montreal protocol on substances that deplete the ozone layer, United Nations Environment Programme

  • Weatherhead EC, Reinsel GC, Tiao GC, Jackman CH, Bishop L, Hollandsworth SM (2000) Detecting the recovery of total column ozone. J Geophys Res 105(D17):201–210

    Article  Google Scholar 

  • Weber M, Dikty S, Burrows JP, Garny H, Dameris M, Kubin A, Abalichin J, Langematz U (2011) The Brewer–Dobson circulation and total ozone from seasonal to decadal time scales. Atmos Chem Phys 11:11221–11235

    Article  Google Scholar 

  • Werner R (2008) The latitudinal ozone variability study using wavelet analysis. J Atmos Solar-Terrestrial Phys 70(2–4):261–267

    Article  Google Scholar 

  • Witte JC, Schoeberl MR, Douglass AR, Thompson AM (2008) The Quasi-biennial Oscillation and annual variations in tropical ozone from SHADOZ and HALOE. Atmos Chem Phys 8:3929–3936

    Article  Google Scholar 

  • WMO (2010) World Meteorological Organization. Scientific assessment of ozone depletion: Global ozone research and monitoring project. Technical Report 52, Geneva, Switzerland

  • WMO (2014) World Meteorological Organization. Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project. Report No. 55, Geneva, Switzerland

  • Ziemke JR, Chandra S (2003) La Nina and El Nino-induced variabilities of ozone in the tropical lower atmosphere during 1970–2001. Geophys Res Lett 30(3)

  • Ziemke JR, Chandra S, Oman LD, Bhartia PK (2010) A new ENSO index derived from satellite measurements of column ozone. Atmos Chem Phys 10(8):3711–3721

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from postdoctoral project No. 3140474, awarded by the National Fund for Scientific and Technological Research (FONDECYT, in Spanish), as well as partial financial support from the Vicerrectoría de Investigación y Desarrollo, Universidad de Chile (ENLACE-FONDECYT/VID-2015) and Research Support Program, Facultad de Ciencias, Universidad de Chile (PAIFAC/2015). Finally, we thank Greg Bodeker of Bodeker Scientific for providing the combined total ozone column database and at Climate Prediction Center (CPC) of the National Oceanic and Atmospheric Administration (NOAA) for providing the eddy heat flux dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Leiva G..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro A., R., Araya, C., Labra O., F. et al. Trend and recovery of the total ozone column in South America and Antarctica. Clim Dyn 49, 3735–3752 (2017). https://doi.org/10.1007/s00382-017-3540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3540-1

Keywords

Navigation