Skip to main content
Log in

Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study demonstrates the close connection between the north–south dipole pattern of sea level pressure anomalies over northeastern North America to the western tropical North Atlantic, referred to as the North American dipole (NAD), and the central Pacific (CP)-type El Niño a year later. In contrast to other ENSO precursors, such as the North Pacific Oscillation (NPO) and Pacific–North America (PNA) pattern, the NAD appears more closely related to the CP-type El Niño than to the eastern Pacific (EP)-type El Niño, indicating that the NAD may serve as a unique precursor for the CP El Niño. The wintertime NAD induces sea surface temperature anomalies in the northern tropical Atlantic (NTA), which subsequently play an important role in developing the CP El Niño-like pattern in the tropical Pacific over the course of the following year. It appears that the NAD influence on CP El Niño involves air–sea interaction over several major basins, including the subtropical/tropical Pacific and the NTA. Additional analysis indicates that the correlation of either the NAD index or the NPO index with the CP El Niño state a year later depends on the status of the other index. When the wintertime NAD index is of the opposite sign to the simultaneous NPO index, the correlation of the NAD or NPO index with the Niño4 index becomes much weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901

    Article  Google Scholar 

  • Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108:D23. doi:10.1029/2003JD003805

    Google Scholar 

  • Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Clim 20:1593–1599

    Article  Google Scholar 

  • Anderson BT, Perez RC, Karspeck A (2013) Triggering of El Niño onset through trade wind–induced charging of the equatorial Pacific. Geophys Res Lett 40:1212–1216. doi:10.1002/grl.50200

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng YH, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126

    Article  Google Scholar 

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. doi:10.1029/2003GL018597

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Capotondi A, Sardeshmukh PD (2015) Optimal precursors of different types of ENSO events. Geophys Res Lett 42:9952–9960. doi:10.1002/2015GL066171

    Article  Google Scholar 

  • Capotondi A et al (2015) Understanding ENSO Diversity. Bull Amer Meteor Soc 96:921–938

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Article  Google Scholar 

  • Chiang J, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Deser C, Timlin M (1997) Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J Clim 10:393–408

    Article  Google Scholar 

  • Ding RQ, Li JP, Tseng YH, Sun C, Guo YP (2015a) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res 120:27–45. doi:10.1002/2014JD022221

    Google Scholar 

  • Ding RQ, Li JP, Tseng YH, Yuan CQ (2015b) Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J Geophys Res 120:964–979. doi:10.1002/2014JD022364

    Google Scholar 

  • Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over South China. J Geophys Res 116:D13102. doi:10.1029/2010JD015160

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi:10.1029/2010JC006695

    Article  Google Scholar 

  • Gushchina D, Dewitte B (2012) Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon Wea Rev 140:3669–3681

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013a) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY (2013b) Two distinct roles of Atlantic SSTs in ENSO variability: north Tropical Atlantic SST and Atlantic Niño. Geophys Res Lett 40:4012–4017. doi:10.1002/grl.50729

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP–NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern Pacific and central Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kim ST, Yu JY, Kumar A, Wang H (2012) Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon Wea Rev 140:1908–1923

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Larson SM, Kirtman BP (2014) The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J Clim 27:7018–7032

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Li JP, Wang JXL (2003) A new North Atlantic Oscillation index and its variability. Adv Atmos Sci 20:661–676

    Article  Google Scholar 

  • Lin CY, Yu JY, Hsu HH (2015) CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int J Climatol 35:2352–2358

    Article  Google Scholar 

  • Linkin ME, Nigam S (2008) The North Pacific oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Chang P, Battisti D, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts, and mechanisms. Int J Climatol 21:1863–1898

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705. doi:10.1029/2011GL047658

    Article  Google Scholar 

  • Pan LL (2005) Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys Res Lett 32:L06707. doi:10.1029/2005GL022427

    Google Scholar 

  • Pegion K, Alexander MA (2013) The seasonal footprinting mechanism in CFSv2: simulation and impact on ENSO prediction. Clim Dyn 41:1671–1683

    Article  Google Scholar 

  • Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031

    Article  Google Scholar 

  • Rogers JC (1981) The North Pacific Oscillation. J Climatol 1:39–57

    Article  Google Scholar 

  • Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22:3167–3174

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003a) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2003b) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16:2653–2667

    Article  Google Scholar 

  • Walker GT, Bliss EW (1932) World weather. V Mem Roy Meteor Soc 4:53–84

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Weng HY, Wu XG, Liu YM, Behera SK, Yamagata T (2011) Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Clim Dyn 36:769–782

    Article  Google Scholar 

  • Wilson AB, Bromwich DH, Hines KM, Wang SH (2014) El Niño flavors and their simulated impacts on atmospheric circulation in the high southern latitudes. J Clim 27:8934–8955

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie SP, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh SW, Wang X, Wang CZ, Dewitte B (2015) On the relationship between the North Pacific climate variability and the central Pacific El Niño. J Clim 28:663–677

    Article  Google Scholar 

  • Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:125–138

    Article  Google Scholar 

  • Yu JY, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37:L08706. doi:10.1029/2010GL042810

    Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Yu JY, Lu MM, Kim ST (2012) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7:034025. doi:10.1088/1748-9326/7/3/034025

    Article  Google Scholar 

  • Yu JY, Kao PK, Paek H, Hsu HH, Hung CW, Lu MM, An SI (2015) Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J Clim 28:651–662

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Iwasaka N (1996) Is climate variability over the North Pacific a linear response to ENSO? J Clim 9:1468–1478

    Article  Google Scholar 

  • Zhang WJ, Wang L, Xiang QB, Qi L, He HJ (2015) Impacts of two types of La Nina on the NAO during boreal winter. Clim Dyn 44:1351–1366

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the China Special Fund for Meteorological Research in the Public Interest (GYHY201506013), the 973 project of China (2016YFA0601801), the National Natural Science Foundation of China for Excellent Young Scholars (41522502), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11010303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqiang Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Li, J., Tseng, Yh. et al. Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim Dyn 49, 1321–1339 (2017). https://doi.org/10.1007/s00382-016-3389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3389-8

Keywords

Navigation