Skip to main content

Advertisement

Log in

Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO–ISMR relationship has become weak in recent years. It’s essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June–July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air–sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an “ocean bridge” role to “prolong” the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979–2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arblaster MJ, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905

    Article  Google Scholar 

  • Ashok K, Guan KZ, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Article  Google Scholar 

  • Ashok K, Guan KZ, Saji NH, Yamagata T (2004) On the individual and combined influences of the ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12:3117–3132

    Article  Google Scholar 

  • Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26:3001–3004

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705

    Article  Google Scholar 

  • Blockeel H, Struyf J (2002) Efficient algorithms for decision tree cross-validation. J Mach Learn Res 3:621–650

    Google Scholar 

  • Bollasina MA, Ming Y (2013) The role of land-surface processes in modulating the Indian monsoon annual cycle. Clim Dyn 41:2497–2509

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An inter-comparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Cai W, Watterson IG (2002) Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J Clim 15:1159–1174

    Article  Google Scholar 

  • Cai W, Baines PG, Gordon HB (1999) Southern mid- to high-latitude variability, a zonal wavenumber-3 pattern, and the Antarctic Circumpolar Wave in the CSIRO coupled model. J Clim 12:3087–3104

    Article  Google Scholar 

  • Cai W, Sullivan A, Cowan T (2011) Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J Clim 24:1688–1704

    Article  Google Scholar 

  • Chaudhuri S, Pal J (2014) The influence of El Niño on the ISM rainfall anomaly: a diagnostic study of the 1982/83 and 1997/98 events. Meteorol Atmos Phys 124:183–194

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of HadGEM2 model. Met Office Hadley Centre Technical Note No. 74. Met Office, Exeter, 47 pp

  • Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094

    Article  Google Scholar 

  • Dee DP, Uppala S, Simmons A et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the Southern Annular Mode. J Clim 25:6330–6348

    Article  Google Scholar 

  • Dugam SS (2006) Monsoon variability in relation to ENSO and NAO. Proc ICSHMO 8:1181–1184

    Google Scholar 

  • Dugam SS, Kakade SB, Verma RK (1997) Interannual and long-term variability in the North Atlantic Oscillation and ISM rainfall. Theor Appl Climatol 58:21–29

    Article  Google Scholar 

  • Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the south Pacific ENSO teleconnection. Clim Dyn 37:2127–2128

    Article  Google Scholar 

  • Gerber EP, Vallis GK (2007) Eddy-zonal flow interactions and the persistence of the zonal index. J Atmos Sci 64:3296–3311

    Article  Google Scholar 

  • Gillett N, Kell T, Jones P (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33:L23704. doi:10.1029/2006GL027721

    Article  Google Scholar 

  • Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462

    Article  Google Scholar 

  • Gupta SA, England MH (2006) Coupled ocean–atmosphere-ice response to variations in the Southern Annular Mode. J Clim 19:4457–4486

    Article  Google Scholar 

  • Harry HH, Lim EP, Nguyen H (2014) Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J Clim 27:3446–3460

    Article  Google Scholar 

  • Hendon HH, Thompson DW, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467

    Article  Google Scholar 

  • Ho M, Kiem AS, Verdonkidd DC (2012) The Southern Annular Mode: a comparison of indices. Hydrol Earth Syst Sci 16:967–982

    Article  Google Scholar 

  • Inara C, Kushnir Y, Cane MA, De VH (2007) Indian summer monsoon rainfall and its link with ENSO and Indian Ocean climate indices. Int J Climatol 27:179–187

    Article  Google Scholar 

  • Kidson JW (1999) Principal modes of southern hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J Clim 12:2808–2830

    Article  Google Scholar 

  • Kinter JL III, Miyakoda K, Yang S (2002) Recent change in the connection from the Asian monsoon to ENSO. J Clim 15:1203–1215

    Article  Google Scholar 

  • Kothawale DR, Kulkarni JR (2014) Performance of August–September Indian monsoon rainfall when June–July rainfall is reported as being in deficit/excess. Meteorol Atmos Phys 127:147–161

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (1999) Climatic impact of El Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4307

    Article  Google Scholar 

  • Lim EP, Harry HH (2015) Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Clim Dyn 44:2807–2824

    Article  Google Scholar 

  • Lin H, Wu Z (2011) Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J Clim 24:2801–2813

    Article  Google Scholar 

  • Liu T, Li JP, Zheng F (2015) Influence of the Boreal Autumn Southern Annular Mode on Winter Precipitation over Land in the Northern Hemisphere. J Clim 28:8825–8839

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • Marshall GJ (2007) Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int J Climatol 27:373–383

    Article  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26:1589–1600

    Article  Google Scholar 

  • Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111:D18101. doi:10.1029/2005JD006323

    Article  Google Scholar 

  • Mokhov II, Smirnov DA, Nakonechnv PI, Kozlenko SS, Seleznev P, Kurths J (2011) Alternating mutual influence of El Nino/Southern Oscillation and Indian monsoon. Geophys Res Lett 38:L00F04. doi:10.1029/2010GL045932

    Article  Google Scholar 

  • Mokhov II, Smirnov DA, Nakonechnv PI, Kozlenko SS, Kurths J (2012) Relationship between El Nino/Southern Oscillation and the Indian monsoon. Izv Atmos Ocean Phys 48:47–56

    Article  Google Scholar 

  • Nan S, Li J (2003) The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys Res Lett 30:2266. doi:10.1029/2003GL018381

    Article  Google Scholar 

  • Palmer TN, Alessandri A, Andersen U et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Reason C, Rouault M (2005) Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys Res Lett 32:L07705. doi:10.1029/2005GL022419

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5: part I: model description. Max Planck Institute for Meteorology Report No. 349. Hamburg, Germany, 127 p

  • Rogers JR, Loon H (1982) Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon Weather Rev 110:1375–1392

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 free run. Clim Dyn 41:1801–1815

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sarkar S, Singh RP, Kafatos M (2004) Further evidences for the weakening relationship of Indian rainfall and ENSO over India. Geophys Res Lett 31:L13209. doi:10.1029/2004GL020259

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731

    Article  Google Scholar 

  • Shukla RP, Kinter JL III (2014) Simulation of the Asian Monsoon using a regionally-coupled global climate mode. Clim Dyn 44:827–843

    Article  Google Scholar 

  • Shukla RP, Tripathi KC, Pandey AC, Das IML (2011) Prediction of Indian summer monsoon rainfall using Nino Indices: a neural network approach. Atmos Res 102:99–109

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sun J (2010) Possible impact of the boreal spring Antarctic Oscillation on the North American summer monsoon. Atmos Ocean Sci Lett 3:232–236

    Article  Google Scholar 

  • Sun J, Wang H, Yuan W (2010) Linkage of the boreal spring Antarctic Oscillation to the West African summer monsoon. J Meteorol Soc Jpn 88:15–28

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000a) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000b) Annular modes in the extratropical circulation. Part I: trends. J Clim 13:1018–1036

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Smith L (2005) Interannual variability of patterns of atmospheric mass distribution. J Clim 18:2812–2825

    Article  Google Scholar 

  • Viswambharan N, Mohanakumar K (2013) Signature of a southern hemisphere extratropical influence on the summer monsoon over India. Clim Dyn 41:367–379

    Article  Google Scholar 

  • Walker GT (1923) Correlation in seasonal variations of weather, VIII. A preliminary study of world weather. Mem India Meteorol Dep 24:75–131

    Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere-warm Ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim 16:1195–1211

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wu ZW, Li J, Wang B, Liu X (2009a) Can the Southern Hemisphere annular mode affect China winter monsoon? J Geophys Res 114:D11107. doi:10.1029/2008JD011501

    Article  Google Scholar 

  • Wu ZW, Wang B, Li J, Jin FF (2009b) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu ZW, Dou J, Lin H (2014) Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: a new mechanism. Clim Dyn 44:1215–1226

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Zhao H, Moore GWK (2004) On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon. Geophys Res Lett 31:L14204. doi:10.1029/2004GL020040

    Article  Google Scholar 

  • Zheng F, Li JP (2012) Impact of preceeding boreal winter Southern Hemisphere annular mode on spring precipitation over south China and related mechanism. Chin J Geophys 55:3542–3557

    Google Scholar 

  • Zheng F, Li JP, Wang L, Xie F, Xf Li (2015) Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J Clim 28:6859–6881

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the ECMWF for providing the re-analysis data and the two anonymous reviews for the valuable comments. The authors are funded by the National Natural Science Foundation of China (NSFC) (Grant No. 91437216), the Ministry of Science and Technology of China (Grant Nos. 2016YFA0601801, 2015CB453201) and the NSFC (Grant No. 41575075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, J., Wu, Z. & Zhou, Y. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall. Clim Dyn 49, 1257–1269 (2017). https://doi.org/10.1007/s00382-016-3380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3380-4

Keywords

Navigation