Skip to main content

Advertisement

Log in

Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The decadal change of El Niño teleconnection and the corresponding response of the boreal winter stratospheric polar vortex are investigated through the composite analysis of El Niño events during the two periods 1958–78 and 1979–2015. It is found that, during the period 1958–78, El Niño generates an anomalous Aleutian low in the mid troposphere extending from northeastern Eurasia to the northeastern Pacific with the most significant center in the northwestern Pacific. The anomalous Aleutian low results in a marked increase in planetary wavenumber 1 but a weak decrease in wavenumber 2 from the upper troposphere to lower stratosphere. The Eliassen–Palm (EP) flux of planetary waves converges at the high latitudes in the stratosphere and brings about a significantly weakened polar vortex. In contrast, during the period 1979–2015, the wintertime El Niño-related Aleutian low shifts eastward into the northeastern Pacific. This variation in tropospheric El Niño teleconnection leads to a dramatic decrease in planetary wavenumber 2 but a relatively weak increase in wavenumber 1. Furthermore, the magnitude of the decrease of wavenumber-2 EP flux is comparable to the increase of wavenumber-1 EP flux in the stratosphere. Consequently, the stratospheric response lessens dramatically, showing a less disturbed and slightly enhanced polar vortex. The lessened stratospheric response is quite obvious in the stratosphere below 10 hPa regardless of the long-term trend being removed or not, indicating a dominant role of El Niño in the wintertime variability of lower polar stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res (Oceans) 112:C11007. doi:10.1029/2006jc003798

    Article  Google Scholar 

  • Baldwin MP, O’Sullivan D (1995) Stratospheric effects of ENSO-related tropospheric circulation anomalies. J Clim 8(4):649–667

    Article  Google Scholar 

  • Bulić IH, Branković Č, Kucharski F (2012) Winter ENSO teleconnections in a warmer climate. Clim Dyn 38:1593–1613. doi:10.1007/s00382-010-0987-8

    Article  Google Scholar 

  • Butler AH, Polvani LM (2011) El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys Res Lett 38:L13807. doi:10.1029/2011GL048084

    Article  Google Scholar 

  • Butler AH, Polvani LM, Deser C (2014) Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environ Res Lett 9:024014. doi:10.1088/1748-9326/9/2/024014

    Article  Google Scholar 

  • Cagnazzo C et al (2009) Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models. Atmos Chem Phys 9:8935–8948. doi:10.5194/acp-9-8935-2009

    Article  Google Scholar 

  • Calvo Fernandez N, Garcia RR, García-Herrera R, Gallego Puyol D, Gimeno Presa L, Hernandez Martin E, Ribera Rodriguez P (2004) Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J Clim 17(20):3934–3946

    Article  Google Scholar 

  • Camp C, Tung KK (2007) Stratospheric polar warming by ENSO in winter: a statistical study. Geophys Res Lett 34:L04809. doi:10.1029/2006GL028521

    Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20(3):449–469

    Article  Google Scholar 

  • Chen W, Takahashi M, Graf HF (2003) Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J Geophys Res 108(D24):4797. doi:10.1029/2003jd003834

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137(656):553–597

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2010) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Edmon HJ Jr, Hoskins BJ, McIntyre ME (1980) Eliassen-Palm cross sections for the troposphere. J Atmos Sci 37(12):2600–2616

    Article  Google Scholar 

  • Eyring V, Butchart N, Waugh D et al (2006) Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J Geophys Res 111:D22308. doi:10.1029/2006JD007327

    Article  Google Scholar 

  • Fu Q, Solomon S, Lin P (2010) On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos Chem Phys 10:2643–2653. doi:10.5194/acp-10-2643-2010

    Article  Google Scholar 

  • García-Herrera R, Calvo N, Garcia RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA-40 reanalysis data. J Geophys Res 111:D06101. doi:10.1029/2005JD006061

    Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El Niño-Southern Oscillation and the Quasi-biennial oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi:10.1029/2007jd008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008jd009920

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23(12):3282–3299. doi:10.1175/2010jcli3010.1

    Article  Google Scholar 

  • Garfinkel CI, Butler A, Waugh D, Hurwitz M, Polvani L (2012) Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J Geophys Res 117:D19106. doi:10.1029/2012JD017777

    Article  Google Scholar 

  • Garfinkel CI, Hurwitz M, Waugh D, Butler A (2013) Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim Dyn 41:1835–1852. doi:10.1007/s00382-012-1570-2

    Article  Google Scholar 

  • Garfinkel CI, Hurwitz M, Oman L (2015) Effect of recent sea surface temperature trends on the Arctic stratospheric vortex. J Geophys Res Atmos 120:5404–5416. doi:10.1002/2015JD023284

    Article  Google Scholar 

  • Graf HF, Zanchettin D (2012) Central Pacific El Niño, the subtropical bridge, and Eurasian climate. J Geophys Res 117:D01102. doi:10.1029/2011JD016493

    Article  Google Scholar 

  • Hamilton K (1993) An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J Atmos Sci 50(20):3468–3474

    Article  Google Scholar 

  • Hamilton K (1995) Interannual variability in the Northern Hemisphere winter middle atmosphere in control and perturbed experiments with the GFDL SKYHI general circulation model. J Atmos Sci 52(1):44–66

    Article  Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121. doi:10.1029/2011JD016001

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786

    Article  Google Scholar 

  • Hu JG, Ren RC, Xu HM (2014) Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J Atmos Sci 71(7):2319–2334

    Article  Google Scholar 

  • Ivy DJ, Solomon S, Thompson DW (2014) On the identification of the downward propagation of Arctic stratospheric climate change over recent decades. J Clim 27(8):2789–2799. doi:10.1175/JCLI-D-13-00445.1

    Article  Google Scholar 

  • Judah LC, Jason CF, Mathew AB, Vladimir AA, Jessica EC (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. doi:10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim 17(13):2584–2596

    Article  Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19(16):3863–3881. doi:10.1175/jcli3826.1

    Article  Google Scholar 

  • Meehl GA, Teng H (2007) Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim Dyn 29:779–790. doi:10.1007/s00382-007-0268-3

    Article  Google Scholar 

  • Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3

    Article  Google Scholar 

  • Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western pacific teleconnection pattern. Geophys Res Lett 37:L13805. doi:10.1029/2010GL043551

    Google Scholar 

  • Randel WJ et al (2004) The SPARC intercomparison of middle atmosphere climatologies. J Clim 17(5):986–1003

    Article  Google Scholar 

  • Randel WJ, Shine KP, Austin J et al (2009) An update of observed stratospheric temperature trends. J Geophys Res 114:D02107. doi:10.1029/2008JD010421

    Article  Google Scholar 

  • Rao J, Ren RC (2016) A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean. Clim Dyn 46:3689–3707. doi:10.1007/s00382-015-2797-5

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002jd002670

    Article  Google Scholar 

  • Sassi F, Kinnison D, Boville B, Garcia R, Roble R (2004) Effect of El Niño-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D17108. doi:10.1029/2003JD004434

    Article  Google Scholar 

  • Taguchi M (2015) Changes in frequency of major stratospheric sudden warmings with El Niño/Southern Oscillation and Quasi-Biennial Oscillation. J Meteor Soc Jpn 93(1):99–115

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. Quart J Roy Meteor Soc 131(612):2961–3012

    Article  Google Scholar 

  • van Loon H, Labitzke K (1987) The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennial Oscillation. Mon Wea Rev 115(2):357–369

    Article  Google Scholar 

  • van Loon H, Zerefos CS, Repapis CC (1982) The Southern Oscillation in the stratosphere. Mon Wea Rev 110(3):225–229

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height Field during the Northern Hemisphere winter. Mon Wea Rev 109(4):784–812

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Xie F, Li JP, Tian WS, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12(11):5259–5273. doi:10.5194/acp-12-5259-2012

    Article  Google Scholar 

  • Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483

    Article  Google Scholar 

  • Zhou ZQ, Xie SP, Zheng XT, Liu Q, Wang H (2014) Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J Clim 27(24):9050–9064

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous reviewers and the editor for their valuable advice and comments. Section 6.1 was stimulated by the comments of one reviewer. This work is jointly supported by the NSFC project (41505034, 41575057, 41630423 and 41490643), China National 973 project (2015CB453200), Jiangsu NSF Key project (BK20150062), the Startup Foundation for Introducing Talent of NUIST (2014R010), and the project funded the Jiangsu Shuang-Chuang Team (R2014SCT001) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Jinggao Hu thanks China Scholarship Council for funding and travel support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, T., Xu, H. et al. Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Clim Dyn 49, 263–278 (2017). https://doi.org/10.1007/s00382-016-3340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3340-z

Keywords

Navigation