Skip to main content

Advertisement

Log in

Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A regional climate model, WRF-Chem, was used to investigate the feedback between aerosols and meteorological conditions in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) and Indo-Gangetic Plain (IGP). The numerical experiments (15-km horizontal resolution) with and without the aerosol effects are driven by reanalysis of data for 1–31 March 2009, when a heavy pollution event (13–19 March) occurred. The results showed that the model captured the spatial and temporal meteorological conditions and aerosol optical characteristics during the heavy pollution days. Aerosols induced cooling at the surface and warming in the middle troposphere due to their radiative effects, and resulted in a more stable PBL over the IGP. Aerosol-induced 2-m relative humidity (RH) was increased. The stable PBL likely led to the surface PM2.5 concentration increase of up to 21 μg m−3 (15 %) over the IGP. For the TP, the atmospheric profile did not drastically change due to fewer radiative effects of aerosols in the PBL compared with those over the IGP. The aerosol-induced RH decreased due to cloud albedo and cloud lifetime effect, and led to a reduction in surface PM2.5 concentration of up to 17 μg m−3 (13 %). These results suggest a negative and positive feedback over the TP and IGP, respectively, between aerosol concentrations and changes of aerosol-induced meteorological conditions. Similar positive feedbacks have been observed in other heavily polluted regions (e.g., the North China Plain). The results have implications for the study of air pollution on weather and environment over the TP and IGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Barnard JC, Fast JD, Paredes-Miranda G, Arnott WP, Laskin A (2010) A technical note: evaluation of the WRF-chem “aerosol chemical to aerosol optical properties” Module using data from the milagro campaign. Atmos Chem Phys 10:7325–7340

    Article  Google Scholar 

  • Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046–1053

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Chin M, Rood RB, Lin SJ, Mtiller JF, Thompson AM (2000) Atmospheric sulfur cycle simulated in the global model GOCART: model descriptionand global properties. J Geophys Res 105:24671–24687

    Article  Google Scholar 

  • Cong ZY, Kang SC, Alexander S, Brent H (2009) Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmos Res 92:42–48

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilationsystem. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J Geophys Res 105(D8):9791–9806

    Article  Google Scholar 

  • Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Emmons LK, Walters S, Hess PG et al (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67

    Article  Google Scholar 

  • Fast JD, Gustafson WI Jr, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Grell GA, Peckham SE (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res 111(D21):5173–5182

    Article  Google Scholar 

  • Freitas SR, Longo KM, Alonso MF, Pirre M, Marecal V, Grell G, Stockler R, Mello RF, Sánchez Gácita M (2011) PREP-CHEM-SRC–1.0: a reprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci Model Dev 4(2):419–433

    Article  Google Scholar 

  •  Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over china: comparison between a high resolution rcm simulation and the driving gcm. Meteorol Atmos Phys 100:73–86

    Article  Google Scholar 

  • Gao Y, Zhang M, Liu Z, Wang L, Wang P, Xia X, Tao M, Zhu L (2015) Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmos Chem Phys 15:4279–4295

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 14:38-1–38-4

    Article  Google Scholar 

  • Grell GA, Peckham SE, Schmitzc R, McKeenb SA, Frostb G, Skamarockd WC, Eder B (2005) Fully coupled ‘‘online’’ chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  Google Scholar 

  • Gustafson WI, Chapman EG, Ghan SJ, Easter RC, Fast JD (2007) Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004. Geophys Res Lett 34:255–268

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Holben BN, Tanre D, Smirnov A et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106(D11):12067–12097

    Article  Google Scholar 

  • Howell SG, Clarke AD, Shinozuka Y et al (2006) Influence of relative humidity upon pollution and dust during ACE-Asia: size distribution and implications for optical properties. J Geophys Res 111(D6):925–946

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Ji ZM, Kang SC (2013a) Double nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under RCPs scenarios. J Atmos Sci 70:1278–1290

    Article  Google Scholar 

  • Ji ZM, Kang SC (2013b) Projection of snow cover changes over China under RCP scenarios. Clim Dyn 41:589–600

    Article  Google Scholar 

  • Ji ZM, Kang SC, Zhang DF, Zhu CZ, Wu J, Xu Y (2011) Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim Dyn 36:1633–1647

    Article  Google Scholar 

  • Ji ZM, Kang SC, Cong ZY, Zhang QG, Yao TD (2015) Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn 45:2831–2846

    Article  Google Scholar 

  • Ji ZM, Kang SC, Zhang QG, Cong ZY, Chen PF, Sillanpää M (2016) Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmos Res 178–179:484–496. doi:10.1016/j.atmosres.2016.05.003

    Article  Google Scholar 

  • Kang SC, Li C, Wang F, Zhang Q, Cong Z (2009) Total suspended particulate matter and toxic elements indoors during cooking with yak dung. Atmos Environ 43:4243–4246

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864

    Article  Google Scholar 

  • Lau WKM, Kim MK, Kim KM, Lee WS (2010) Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett 5:302–307

    Article  Google Scholar 

  • Li XZ, Liu XD (2009) A numerical study of the aerosol influence on climate change over Tibetan Plateau. J Arid Meteorol 27:1–9 (in Chinese)

    Google Scholar 

  • Ming J, Xiao C, Cachier H, Qin D, Qin X, Li Z et al (2009) Black carbon (BC) in the snow of glaciers in West China and its potential effects on albedos. Atmos Res 92(1):114–123

    Article  Google Scholar 

  • Myhre G et al (2013) Radiative forcing of the direct aerosol effect from AeroCom hase II simulations. Atmos Chem Phys 13:1853–1877

    Article  Google Scholar 

  • Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asianaerosols for regional climate studies. J Geophys Res 117(D4):183–204. doi:10.1029/2011JD016711

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Sciences 5549:2119–2124

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Article  Google Scholar 

  • Schaefer JT (1990) The critical success index as an indicator of warning skill. Weather Forecast 5:570–575

    Article  Google Scholar 

  • Shi Y, Gao X, Zhang D, Giorgi F (2011) Climate change over the Yarlung Zangbo–Brahmaputra river basin in the 21st century as simulated by a high resolution regional climate model. Quat Int 244:159–168

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JD (2005) A description of the Advanced Research WRF version 2, Tech Rep TN-468+STR, p 8, Natl Cent Atmos Res Boulder Colo

  • Tummon F, Solmon F, Liousse C, Tadross M (2010) Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. J Geophys Res 115(D19):1485–1490

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Wang ZL, Zhang H, Guo PW (2009) Effects of black carbon aerosol in South Asia on Asian summer monsoon. Plateau Meteorol 28:419–424 (in Chinese)

    Google Scholar 

  • Wang K, Zhang Y, Yahya K, Wu SY, Georg G (2014) Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmos Environ 115:716–732

    Article  Google Scholar 

  • Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja AJ (2010) The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev Discuss 3:2439–2476

    Article  Google Scholar 

  • Wu GX, Mao JY, Duan AM, Zhang Q (2004) Recent progress in the study on the impacts of Tibetan Plateau on asian summer climate. Acta Meteorol Sin 62:528–540

    Google Scholar 

  • Ysunari TJ, Tan Q, Lau KM, Bonasoni P, Marinoni A, Laj P, Ménégoz M, Takemura Y, Chin M (2013) Estimated range ofblack carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos Environ 78:259–267

    Article  Google Scholar 

  • Yu ET, Wang HJ, Sun JQ (2010) A quick report on a dynamical downscaling simulation over China using the nested model. Atmos Ocean Sci Lett 3:325–329

    Article  Google Scholar 

  • Zhang Y (2008) Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmos Chem Phys 8:2895–2932

    Article  Google Scholar 

  • Zhang DF, Zakey AS, Gao XJ, Giorgi F, Solmon F (2009) Simulation of dust aerosol and its regional feedbacks over east asia using a regional climate model. Atmos Chem Phys 9:1095–1110

    Article  Google Scholar 

  • Zhao C, Liu X, Leung LR, Johnson B, McFarlane SA, Gustafson WI Jr, Fast JD, Easter R (2010) The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments. Atmos Chem Phys 10:8821–8838

    Article  Google Scholar 

  • Zhao C, Liu X, Leung LR, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41301061, 41421061, 41571062, 41190081, and 41190080), the Chinese Academy of Sciences (KJZD-EW-G03-04),  China Meteorological Administration Special Public Welfare Research Fund (GYHY201306019). Additionally, we would like to acknowledge esources and time on the Supercomputing Center, Big Data Center of Cold and Arid Region Environment and Engineering Research Institute, Chinese Academy of Sciences and we grateful to Guohui Zhao for his help of installing some software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shichang Kang or Zhenming Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Duan, K., Kang, S. et al. Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Clim Dyn 48, 2901–2917 (2017). https://doi.org/10.1007/s00382-016-3240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3240-2

Keywords

Navigation