Skip to main content

Advertisement

Log in

Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climatic significance of ice core stable isotope record in the Himalayas and southern Tibetan Plateau (TP), where the climate is alternately influenced by Indian summer monsoon and mid-latitude westerlies, is still debated. A newly drilled Zuoqiupu ice core from a temperate maritime glacier on the southeastern TP covering 1942–2011 is investigated in terms of the relationships between δ18O and climate parameters. Distinct seasonal variation of δ18O is observed due to high precipitation amount in this area. Thus the monsoon (June to September) and non-monsoon (October to May) δ18O records are reconstructed, respectively. The temperature effect is identified in the annual δ18O record, which is predominantly contributed by temperature control on the non-monsoon precipitation δ18O record. Conversely, the negative correlation between annual δ18O record and precipitation amount over part of Northeast India is mostly contributed by the monsoon precipitation δ18O record. The variation of monsoon δ18O record is greatly impacted by the Indian summer monsoon strength, while that of non-monsoon δ18O record is potentially associated with the mid-latitude westerly activity. The relationship between Zuoqiupu δ18O record and Sea Surface Temperature (SST) is found to be inconsistent before and after the climate shift of 1976/1977. In summer monsoon season, the role of SST in the monsoon δ18O record is more important in eastern equatorial Pacific Ocean and tropical Indian Ocean before and after the shift, respectively. In non-monsoon season, however, the Atlantic Multidecadal Oscillation has a negative impact before but positive impact after the climate shift on the non-monsoon δ18O record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502. doi:10.1029/2001gl013294

    Article  Google Scholar 

  • Bershaw J, Penny SM, Garzione CN (2012) Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J Geophys Res Atmos 117:D02110. doi:10.1029/2011JD016132

    Article  Google Scholar 

  • Bonasoni P et al (2010) Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal climate observatory-pyramid (5079 m). Atmos Chem Phys 10:7515–7531. doi:10.5194/acp-10-7515-2010

    Article  Google Scholar 

  • Bradley RS, Vuille M, Hardy D, Thompson LG (2003) Low latitude ice cores record Pacific sea surface temperatures. Geophys Res Lett 30:1174. doi:10.1029/2002gl016546

    Article  Google Scholar 

  • Burns SJ, Fleitmann D, Mudelsee M, Neff U, Matter A, Mangini A (2002) A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. J Geophys Res Atmos 107:4434. doi:10.1029/2001JD001281

    Article  Google Scholar 

  • Cannon F, Carvalho LV, Jones C, Bookhagen B (2015) Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim Dyn 44:441–455. doi:10.1007/s00382-014-2248-8

    Article  Google Scholar 

  • Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277:925–928. doi:10.1126/science.277.5328.925

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi:10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  • Davis ME, Thompson LG, Yao T, Wang N (2005) Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high-resolution ice core and tropical coral records. J Geophys Res 110:D04101. doi:10.1029/2004JD004933

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080. doi:10.1029/2000GL012745

    Article  Google Scholar 

  • Gao J, Masson-Delmotte V, Yao T, Tian L, Risi C, Hoffmann G (2010) Precipitation water stable isotopes in the South Tibetan Plateau: observations and modeling. J Clim 24:3161–3178. doi:10.1175/2010jcli3736.1

    Article  Google Scholar 

  • Gao J, Masson-Delmotte V, Risi C, He Y, Yao T (2013) What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65:21043. doi:10.3402/tellusb.v65i0.21043

    Article  Google Scholar 

  • Gautam R et al (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863. doi:10.5194/acp-11-12841-2011

    Article  Google Scholar 

  • Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res Atmos 114:D24107. doi:10.1029/2009JD012728

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dynam 4:199–217. doi:10.5194/esd-4-199-2013

    Article  Google Scholar 

  • He Y et al (2015) Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. J Geophys Res Atmos 120:3852–3871. doi:10.1002/2014jd022180

    Article  Google Scholar 

  • Hoffmann G et al (2003) Coherent isotope history of Andean ice cores over the last century. Geophys Res Lett 30:1179. doi:10.1029/2002GL014870

    Article  Google Scholar 

  • Hren MT, Bookhagen B, Blisniuk PM, Booth AL, Chamberlain CP (2009) δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett 288:20–32. doi:10.1016/j.epsl.2009.08.041

    Article  Google Scholar 

  • Joswiak DR, Yao T, Wu G, Xu B, Zheng W (2010) A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau. Clim Past 6:219–227. doi:10.5194/cp-6-219-2010

    Article  Google Scholar 

  • Jouzel J (2013) A brief history of ice core science over the last 50 yr. Clim Past 9:2525–2547. doi:10.5194/cp-9-2525-2013

    Article  Google Scholar 

  • Kang S, Wake CP, Qin D, Mayewski PA, Yao T (2000) Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau. J Glaciol 46:222–226. doi:10.3189/172756500781832864

    Article  Google Scholar 

  • Kang S et al (2006) Relationships between an ice core records from southern Tibetan Plateau and atmospheric circulation over Asia [in Chinese with English abstract]. Quat Sci 26:153–164

    Google Scholar 

  • Kaspari S et al (2007) Reduction in northward incursions of the South Asian monsoon since ~1400 AD inferred from a Mt. Everest ice core. Geophys Res Lett 34:L16701. doi:10.1029/2007GL030440

    Google Scholar 

  • Krishnamurthy L, Krishnamurthy V (2014) Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim Dyn 42:2397–2410. doi:10.1007/s00382-013-1856-z

    Article  Google Scholar 

  • Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242. doi:10.1007/s00382-003-0330-8

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi:10.1126/science.284.5423.2156

    Article  Google Scholar 

  • Kurita N, Yamada H (2008) The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. J Hydrometeorol 9:760–775. doi:10.1175/2007JHM945.1

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033. doi:10.1029/JC084iC08p05029

    Article  Google Scholar 

  • Pang H et al (2012) Atmospheric circulation change in the central Himalayas indicated by a high-resolution ice core deuterium excess record. Clim Res 53:1–12. doi:10.3354/cr01090

    Article  Google Scholar 

  • Pang H, Hou S, Kaspari S, Mayewski PA (2014) Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere 8:289–301. doi:10.5194/tc-8-289-2014

    Article  Google Scholar 

  • Pfahl S, Sodemann H (2014) What controls deuterium excess in global precipitation? Clim Past 10:771–781. doi:10.5194/cp-10-771-2014

    Article  Google Scholar 

  • Qin D, Hou S, Zhang D, Ren J, Kang S, Mayewski PA, Wake CP (2002) Preliminary results from the chemical records of an 80.4 m ice core recovered from East Rongbuk glacier, Qomolangma (Mount Everest), Himalaya. Ann Glaciol 35:278–284. doi:10.3189/172756402781816799

    Article  Google Scholar 

  • Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423. doi:10.1038/ncomms8423

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, Mckenzie J, Savin S (eds) Climate change in continental isotopic records, 1st edn. American Geophysical Union, Washington, DC, pp 1–36. doi:10.1029/GM078p0001

  • Sabeerali CT, Rao S, Ajayamohan RS, Murtugudde R (2012) On the relationship between Indian summer monsoon withdrawal and Indo-Pacific SST anomalies before and after 1976/1977 climate shift. Clim Dyn 39:841–859. doi:10.1007/s00382-011-1269-9

    Article  Google Scholar 

  • Sahana AS, Ghosh S, Ganguly A, Murtugudde R (2015) Shift in Indian summer monsoon onset during 1976/1977. Environ Res Lett 10:054006. doi:10.1088/1748-9326/10/5/054006

    Article  Google Scholar 

  • Sano M, Tshering P, Komori J, Fujita K, Xu C, Nakatsuka T (2013) May–September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. J Geophys Res Atmos 118:8399–8410. doi:10.1002/jgrd.50664

    Article  Google Scholar 

  • Schneider DP, Noone DC (2007) Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change. J Geophys Res Atmos 112:D18105. doi:10.1029/2007JD008652

    Article  Google Scholar 

  • Suo M, Ding Y (2009) The structures and evolutions of the wintertime southern branch trough in the subtropical westerlies [in Chinese with English abstract]. Chin J Atmos Sci 33:425–442

    Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1916–1919. doi:10.1126/science.289.5486.1916

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM, Mikhalenko VN, Lin P-N (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950. doi:10.1126/science.1234210

    Article  Google Scholar 

  • Tian L et al (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res Atmos 108:4293. doi:10.1029/2002JD002173

    Article  Google Scholar 

  • Tian L et al (2007) Stable isotopic variations in west China: a consideration of moisture sources. J Geophys Res Atmos 112:D10112. doi:10.1029/2006JD007718

    Article  Google Scholar 

  • Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N (2008) Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res Atmos 113:D19114. doi:10.1029/2008JD010209

    Article  Google Scholar 

  • van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi:10.1029/2010WR009127

    Google Scholar 

  • Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res Atmos 110:D23108. doi:10.1029/2005JD006022

    Article  Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res Atmos 114:D02112. doi:10.1029/2008JD010929

    Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J Roy Meteorol Soc 118:877–926. doi:10.1002/qj.49711850705

    Article  Google Scholar 

  • Wu G, Zhang C, Xu B, Mao R, Joswiak D, Wang N, Yao T (2013) Atmospheric dust from a shallow ice core from Tanggula: implications for drought in the central Tibetan Plateau over the past 155 years. Quat Sci Rev 59:57–66. doi:10.1016/j.quascirev.2012.10.003

    Article  Google Scholar 

  • Xu B et al (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci USA 106:22114–22118. doi:10.1073/pnas.0910444106

    Article  Google Scholar 

  • Yang B, Braeuning A, Yao T, Davis ME (2007) Correlation between the oxygen isotope record from Dasuopu ice core and the Asian Southwest Monsoon during the last millennium. Quat Sci Rev 26:1810–1817. doi:10.1016/j.quascirev.2007.03.003

    Article  Google Scholar 

  • Yang X, Yao T, Yang W, Xu B, He Y, Qu D (2012) Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. J Clim 25:2509–2516. doi:10.1175/jcli-d-11-00180.1

    Article  Google Scholar 

  • Yang W, Yao T, Guo X, Zhu M, Li S, Kattel DB (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J Geophys Res Atmos 118:9579–9594. doi:10.1002/jgrd.50760

    Article  Google Scholar 

  • Yao T et al (2007) Temperature variations over the past millennium on the Tibetan Plateau revealed by four ice cores. Ann Glaciol 46:362–366. doi:10.3189/172756407782871305

    Article  Google Scholar 

  • Yao T, Duan K, Xu B, Wang N, Guo X, Yang X (2008) Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau. Clim Past 4:175–180. doi:10.5194/cp-4-175-2008

    Article  Google Scholar 

  • Yao T et al (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51:525–548. doi:10.1002/rog.20023

    Article  Google Scholar 

  • Yu W, Xu B, Lai C-T, Ma Y, Tian L, Qu D, Zhu Z (2014) Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau. Geophys Res Lett 41:7746–7753. doi:10.1002/2014GL062004

    Article  Google Scholar 

  • Zhao Z et al (2013) Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: implications for pollution transport from South Asia. J Geophys Res Atmos 118:11360–11375. doi:10.1002/jgrd.50599

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grants 41125003 and 41371089) and the CAS Strategic Priority Research Program (Grant XDB03030101). We would like to thank the National Meteorological Center of CMA and the Third Pole Environment Database for providing the meteorological data. All-Indian and macro-regional monsoon rainfall data were provided by the Indian Institute of Tropical Meteorology, Pune, India, from their website at http://www.tropmet.res.in/. The CRU TS 3.22 dataset was provided by the British Atmospheric Data Centre, Chilton, UK, from their website at http://badc.nerc.ac.uk/browse/badc/cru/. The spatial correlations of monsoon δ18O record with SST were calculated online at http://www.esrl.noaa.gov/psd/data/correlation/ provided by the NOAA/ESRL Physical Sciences Division, Boulder, Colorado, USA. We also thank the editors and the anonymous reviewers for their constructive comments and suggestions, which considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabiao Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 51 kb)

Supplementary material 2 (DOCX 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Xu, B., Li, Z. et al. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau. Clim Dyn 48, 1161–1171 (2017). https://doi.org/10.1007/s00382-016-3133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3133-4

Keywords

Navigation