Skip to main content

Advertisement

Log in

Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Investigation of past tropical cyclone (TC) activity in the Western North Pacific (WNP) is potentially helpful to enable better understanding of future TC behaviors. In this study, we examine variations in large-scale environmental factors important to TC genesis in the last millennium simulations from the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3). The results show that potential intensity, a theoretical prediction of the maximum TC intensity, is increased relative to the last millennium in the north part of the WNP in the Medieval Climate Anomaly (MCA; 950–1200 AD) while it is decreased in the Little Ice Age (LIA; 1600–1850 AD). Vertical wind shear that generally inhibits TC genesis is enhanced (reduced) to the south of 20°N and is reduced (enhanced) to the north in the MCA (LIA). Relative humidity (at 600 hPa) that measures the mid-tropospheric moisture content broadly shows an increase (decrease) in the MCA (LIA). A genesis potential index indicates that conditions are generally favorable (unfavorable) for TC formation in the WNP in the MCA (LIA), especially in the northern part. Taking changes in steering flows into account, there may be an increasing (decreasing) favorability for storm strikes in East Asia in the MCA (LIA). The estimated TC activity is consistent with the geological proxies in Japan, but contradicts with the typhoon records in southern China and Taiwan. This model-data discrepancy is attributed to the limitations in both simulations and reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci 104:3713–3718. doi:10.1073/pnas.0605064103

    Article  Google Scholar 

  • Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J Geophys Res 107:4801. doi:10.1029/2001JD000776

    Article  Google Scholar 

  • Braconnot P, Harrison SP, Otto-Bliesner B, Abe-Ouchi A, Jungclaus J, Peterschmitt JY (2011) The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exch 56(16):15–19

    Google Scholar 

  • Bruyère CL, Holland GJ, Towler E (2012) Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J Clim 25:8611–8626. doi:10.1175/JCLI-D-11-00619.1

    Article  Google Scholar 

  • Camargo SJ (2013) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim 26:9880–9902. doi:10.1175/JCLI-D-12-00549.1

    Article  Google Scholar 

  • Camargo SJ, Emanuel KA, Sobel AH (2007a) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834. doi:10.1175/JCLI4282.1

    Article  Google Scholar 

  • Camargo SJ, Sobel AH, Barnston AG, Emanuel KA (2007b) Tropical cyclone genesis potential index in climate models. Tellus A 59:428–443. doi:10.1111/j.1600-0870.2007.00238.x

    Article  Google Scholar 

  • Camargo SJ, Tippett MK, Sobel AH, Vecchi GA, Zhao M (2014) Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J Clim 27:9171–9196. doi:10.1175/JCLI-D-13-00505.1

    Article  Google Scholar 

  • Chen HF, Wen SY, Song SR et al (2012) Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene. J Quat Sci 27:964–972. doi:10.1002/jqs.2590

    Article  Google Scholar 

  • Chen D, Wang H, Liu J, Li G (2014) Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific. Int J Climatol. doi:10.1002/joc.4213

    Google Scholar 

  • Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 42:271–276. doi:10.1038/nature01779

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277. doi:10.1126/science.289.5477.270

    Article  Google Scholar 

  • Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutzs K, Cole-Dai J, Castellano E (2008) Volcanism and the Little Ice Age. PAGES Newslett 16:22–23

    Google Scholar 

  • Delaygue G, Bard E (2011) An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim Dyn 36:2201–2218. doi:10.1007/s00382-010-0795-1

    Article  Google Scholar 

  • Elsner JB, Liu KB (2003) Examining the ENSO-typhoon hypothesis. Clim Res 25:43–54. doi:10.3354/cr025043

    Article  Google Scholar 

  • Emanuel K (1986) An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43:585–605. doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906

    Article  Google Scholar 

  • Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110:12219–12224

    Article  Google Scholar 

  • Emanuel K, Nolan D (2004) Tropical cyclone activity and the global climate system. In: Preprints of the 26th conference on hurricanes and tropical meteorology, Miami, FL, Am Meteorol Soc A

  • Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Weather Rev 129:2249–2269. doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2

    Article  Google Scholar 

  • Gao CC, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113:D23111. doi:10.1029/2008JD010239

    Article  Google Scholar 

  • García-Herrera R, Ribera P, Hernández E, Gimeno L (2007) Northwest Pacific typhoons documented by the Philippine Jesuits, 1566–1900. J Geophys Res 112:D06108. doi:10.1029/2006JD007370

    Article  Google Scholar 

  • Ho CH, Kim JH, Kim HS, Sui CH, Gong DY (2005) Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J Geophys Res 110:D19104. doi:10.1029/2005JD005766

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:10.1038/ngeo779

    Article  Google Scholar 

  • Korty RL, Camargo SJ, Galewsky J (2012a) Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J Clim 25:4348–4365. doi:10.1175/JCLI-D-11-00517.1

    Article  Google Scholar 

  • Korty RL, Camargo SJ, Galewsky J (2012b) Variations in tropical cyclone genesis factors in simulations of the Holocene epoch. J Clim 25:8196–8211. doi:10.1175/JCLI-D-12-00033.1

    Article  Google Scholar 

  • Kozar ME, Mann ME, Emanuel KA, Evans JL (2013) Long-term variations of North Atlantic tropical cyclone activity downscaled from a coupled model simulation of the last millennium. J Geophys Res 118:13383–13392. doi:10.1002/2013JD020380

    Google Scholar 

  • Liu KB, Shen C, Louie KS (2001) A 1,000-year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records. Ann Assoc Am Geogr 91:453–464

    Article  Google Scholar 

  • Manganello JV, Hodges K, Dirmeyer B et al (2014) Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J Clim 27:7622–7646. doi:10.1175/JCLI-D-13-00678.1

    Article  Google Scholar 

  • Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883. doi:10.1038/nature08219

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A et al (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 383–464

  • Nolan DS, Rappin ED, Emanuel KA (2007) Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Q J R Meteorol Soc 133:2085–2107. doi:10.1002/qj.170

    Article  Google Scholar 

  • Pongratz J, Reick CH, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles 22:GB3018. doi:10.1029/2007GB003153

    Article  Google Scholar 

  • Pun IF, Lin II, Lo MH (2013) Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys Res Lett 40:4680–4684. doi:10.1002/grl.50548

    Article  Google Scholar 

  • Rojas M, Arias PA, Flores-Aqueveque V, Seth A, Vuille M (2015) The South American monsoon variability over the last millennium in CMIP5/PMIP3 simulations. Clim Past Discuss 11:5651–5681. doi:10.5194/cpd-11-5651-2015

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi:10.5194/gmd-4-33-2011

    Article  Google Scholar 

  • Steinhilber F, Beer J, Frohlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. doi:10.1029/2009GL040142

    Article  Google Scholar 

  • Stowasser M, Wang Y, Hamilton K (2007) Tropical cyclone changes in the western North Pacific in a global warming scenario. J Clim 20:2378–2396. doi:10.1175/JCLI4126.1

    Article  Google Scholar 

  • Sueyoshi T, Ohgaito R, Yamamoto A et al (2013) Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM. Geosci Model Dev 6:819–836. doi:10.5194/gmd-6-819-2013

    Article  Google Scholar 

  • Tang B, Emanuel K (2012) A ventilation index for tropical cyclones. Bull Am Meteorol Soc 93:1901–1912. doi:10.1175/BAMS-D-11-00165.1

    Article  Google Scholar 

  • Tippett MK, Camargo SJ, Sobel AH (2011) A poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J Clim 24:2335–2357. doi:10.1175/2010JCLI3811.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  Google Scholar 

  • Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astron Astrophys 531:A6. doi:10.1051/0004-6361/201015843

    Article  Google Scholar 

  • Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the western North Pacific. J Clim 15:1643–1658. doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2

    Article  Google Scholar 

  • Wang YM, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538. doi:10.1086/429689

    Article  Google Scholar 

  • Wang H, Sun J, Fan K (2007) Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Sci China Ser D Earth Sci 50:1409–1416. doi:10.1007/s11430-007-0097-6

    Article  Google Scholar 

  • Weinkle J, Maue R, Pielke R Jr (2012) Historical global tropical cyclone landfalls. J Clim 25:4729–4735. doi:10.1175/JCLI-D-11-00719.1

    Article  Google Scholar 

  • Woodruff JD, Donnelly JP, Okusu A (2009) Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Q Sci Rev 28:1774–1785. doi:10.1016/j.quascirev.2009.02.005

    Article  Google Scholar 

  • Wu L, Wang B (2004) Assessing impacts of global warming on tropical cyclone tracks. J Clim 17:1686–1698. doi:10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2

    Article  Google Scholar 

  • Wu MC, Chang WL, Leung WM (2004) Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J Clim 17:1419–1428. doi: 10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2

    Google Scholar 

  • Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation index for the past 2,000 years from precipitation proxies. Nat Geosci 4:611–614. doi:10.1038/ngeo1231

    Article  Google Scholar 

  • Yan Q, Korty R, Zhang Z (2015) Tropical cyclone genesis factors in a simulation of the last two millennia: results from Community Earth System Model. J Clim. doi:10.1175/JCLI-D-15-0054.1

    Google Scholar 

  • Yu KF, Zhao JX, Shi Q, Meng QS (2009) Reconstruction of storm/tsunami records over the last 4000 years using transported coral blocks and lagoon sediments in the southern South China Sea. Q Int 195:128–137. doi:10.1016/j.quaint.2008.05.004

    Article  Google Scholar 

  • Zhang Y, Wang H, Sun J, Drange H (2010) Changes in the tropical cyclone genesis potential index over the western north pacific in the SRES A2 scenario. Adv Atmos Sci 27:1246–1258. doi:10.1007/s00376-010-9096-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Robert Korty for the guidance on genesis index and Kerry Emanuel for making available his potential intensity algorithm. We thank the two anonymous reviewers for their constructive comments, which significantly improved this paper. This work was supported by the National Natural Science Foundation of China (41402158, 41472160, and 41505068). We acknowledge the modeling groups (Table 1) for making their simulations available for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the British Atmospheric Data Centre (BADC) for collecting and archiving the CMIP5 model output, and the WCRP’s Working Group on Coupled Modeling (WGCM) for organizing the model data analysis activity. For CMIP5 the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Wei, T. & Zhang, Z. Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations. Clim Dyn 48, 957–970 (2017). https://doi.org/10.1007/s00382-016-3120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3120-9

Keywords

Navigation