Skip to main content

Advertisement

Log in

Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5–8 %/K in other regions and at lower altitudes. The “upper-tropospheric amplification” of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to −20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S–10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • de Forster PMF, Collins M (2004) Quantifying the water vapourfeedback associated with post-Pinatubo global cooling. Clim Dyn 23:207–214

    Article  Google Scholar 

  • Dessler AE, Zhang Z, Yang P (2008) Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys Res Lett 35:L20704. doi:10.1029/2008GL035333

    Article  Google Scholar 

  • Dessler AE, Sherwood SC (2009) A matter of humidity. Science 323:1020–1021

    Article  Google Scholar 

  • Dessler AE, Wong S (2009) Estimates of the water vapor climate feedback during El Niño-Southern oscillation. J Clim 22:6404–6412. doi:10.1175/2009JCLI3052.1

    Article  Google Scholar 

  • Fasullo JT, Trenberth KE (2012) A less cloudy future: the role of subtropical subsidence in climate sensitivity. Science 338:792–794

    Article  Google Scholar 

  • Fueglistaler S, Dessler AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Tropical tropopause layer. Rev. Geophys. 47:RG1004. doi:10.1029/2008RG000267

    Article  Google Scholar 

  • Goody RM, Yung YL (1989) Atmospheric radiation: theoretical basis, 2nd ed. Oxford University Press, p 519

  • Jiang JH, Su H, Zhai C, Perun VS, Del Genio A, Nazarenko LS, Donner LJ, Horowitz L, Seman C, Cole J, Gettelman A, Ringer M, Rotstayn L, Jeffrey S, Wu T, Brient F, Dufresne J-L, Kawai H, Koshiro T, Watanabe M, LÉcuyer TS, Volodin EM, Iversen T, Drange H, Mesquita MS, Read WG, Waters JW, Tian B, Teixeira J, Stephens GL (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA A-train satellite observations. J Geophys Res 117, D1410, 24. doi:10.1029/2011JD017237

  • Lau WK, Kim K-M (2015) Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. PNAS, Early Edition (1–6). doi: 10.1073/pnas.1418682112

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  Google Scholar 

  • Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Minschwaner K, Dessler AE (2004) Water vapor feedback in the tropical upper troposphere: Model results and observations. J Clim 17:1272–1282

    Article  Google Scholar 

  • Ramaswamy V, Schwarzkopf MD, Randel WJ, Santer BD, Soden BJ, Stenchikov G (2006) Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 311:1138–1141

    Article  Google Scholar 

  • Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 591–662

  • Sherwood SC, Bony S, Dufresne J-L (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42. doi:10.1038/nature12829

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520

    Article  Google Scholar 

  • Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science. doi:10.1126/science.1115602

    Google Scholar 

  • Su H, Jiang JH, Zhai C, Shen TJ, Neelin JD, Stephens GL, Yung YL (2014) Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. J Geophys Res Atmos 119:5787–5805. doi:10.1002/2014JD021642

    Article  Google Scholar 

  • Takahashi H, Su H, Jiang JH (2015) Error analysis of upper tropospheric water vapor in CMIP5 models using “A-Train” satellite observations and reanalysis data. Clim Dyn. doi:10.1007/s00382-015-2732-9

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tian BJ (2015) Spread of model climate sensitivity linked to double-intertropical convergence zone bias. Geophys Res Lett. doi:10.1002/2015GL064119

    Google Scholar 

  • Udelhofen PM, Hartmann DL (1995) Influence of tropical cloud systems on the relative humidity in the upper troposphere. J Geophys Res 100. doi:10.1029/94JD02826

  • Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362. doi:10.1007/s00382-013-1725-9

    Article  Google Scholar 

  • Zhai C, Jiang JH, Su H (2015) Long term cloud change imprinted in seasonal cloud variation: more evidence of high climate sensitivity. Geophys Res Lett 42:8729–8737. doi:10.1002/2015GL065911

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the funding support by NASA ROSES AST, NEWS, MAP and NDOA programs. We are also grateful to Mark Richardson and two anonymous reviewers for their valuable comments. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanii Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Su, H. & Jiang, J.H. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models. Clim Dyn 47, 3673–3691 (2016). https://doi.org/10.1007/s00382-016-3035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3035-5

Keywords

Navigation