Skip to main content

Advertisement

Log in

Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north Pacific by RegCM4

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study evaluates the sensitivity of summertime rainfall simulations over East-to-southeast Asia and the western north Pacific in the regional climate model version 4 (RegCM4) to cumulus (including Grell with Arakawa–Schubert type closure, Grell with Fritsch–Chappell type closure, and Emanuel), land surface (Biosphere–atmosphere transfer scheme or BATS, and the community land model or CLM) and ocean surface (referred to as Zeng1, Zeng2 and BATS1e in the model) schemes by running the model with different combinations of these parameterization packages. For each of these experiments, ensemble integration of the model was carried out in the extended boreal summer of May–October from 1998 to 2007. The simulated spatial distribution, intensity and inter-annual variation of the precipitation, latent heat flux, position of the subtropical high and tropical cyclone genesis patterns from these numerical experiments were analyzed. Examinations show that the combination of Emanuel, CLM and Zeng2 (E-C-Z2) yields the best overall results, consistent with the fact that physical mechanisms considered in E-C-Z2 tend to be more comprehensive in comparison with the others. Additionally, the rainfall quantity is found very sensitive to sea surface roughness length, and the reduction of the roughness length constant (from 2 × 10−4 to 5 × 10−5 m) in our modified BATS1e mitigates the drastic overestimation of latent heat flux and rainfall, and is therefore preferable to the default value for simulations in the western north Pacific region in RegCM4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adeniyi MO (2014) Sensitivity of different convection schemes in RegCM4.0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa. Theor Appl Climatol 115:305–332

    Article  Google Scholar 

  • An KH, Tam CY, Park CK (2009) Improving the northeast Asian monsoon simulation: remote impact of tropical heating bias correction. Mon Weather Rev 137:797–803

    Article  Google Scholar 

  • Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). National Center for Atmospheric Research Tech Note TN-282+STR, NCAR, Boulder, CO

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Au-Yeung AYM, Chan JCL (2012) Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the Western North Pacific. Clim Dyn 39:783–794

    Article  Google Scholar 

  • Brunke MA, Fairall CW, Zeng X, Eymard L, Curry JA (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Clim 16:619–635

    Article  Google Scholar 

  • Chen F, Avissar R (1994) Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J Appl Meteor 33:1382–1401

    Article  Google Scholar 

  • Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33:L24709

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Amer Meteor Soc 84:1013–1023

    Article  Google Scholar 

  • Davis N, Bowden J, Semazzi F, Xie L, Önol B (2009) Customization of RegCM3 regional climate model for eastern Africa and a tropical Indian Ocean domain. J Clim 22:3595–3616

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note, NCAR/TN-387+STR

  • Diro GT, Rausher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48

    Article  Google Scholar 

  • Donelan M, Donelan FW, Smith SD, Anderson RJ (1993) On the dependence of sea surface roughness on wave development. J Phys Oceanogr 23:2143–2149

    Article  Google Scholar 

  • Dudhia J, Gill D, Manning K, Wang W, Bruyere C, Kelly S, Lackey K (2004) PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3, NCAR

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air–sea fluxes for TOGACOARE. J Geophys Res 101:3747–3764

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17:294–304

    Article  Google Scholar 

  • Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:722–1733

    Google Scholar 

  • Gao XJ, Zhao ZC, Ding YH, Huang RH, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18:1224–1230

    Article  Google Scholar 

  • Gao XJ, Xu Y, Zhao ZC, Pal JS, Giorgi F (2006a) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185

    Article  Google Scholar 

  • Gao Z, Wang Q, Wang S (2006b) An alternative approach to sea surface aerodynamic roughness. J Geophys Res 111:D22108

    Article  Google Scholar 

  • Gao XJ, Shi Y, Giorgi F (2011) A high resolution simulation of climate change over China. Sci China D Earth Sci 54:462–472

    Article  Google Scholar 

  • Gao XJ, Wang ML, Giorgi F (2013) Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos Ocean Sci Lett 6:381–386

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316

    Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, De Canio G (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nairl V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary test over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118:1561–1575

    Article  Google Scholar 

  • Huang WR, Chan JCL (2014) Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall. Clim Dyn 42:2227–2237

    Article  Google Scholar 

  • Huang WR, Chan JCL, Wang SY (2010) A planetary-scale land–sea breeze circulation in East Asia and the western north Pacific. Q J R Meteorol Soc 136:1543–1553

    Article  Google Scholar 

  • Huang WR, Chan JCL, Au-Yeung AYM (2013) Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40:1625–1642

    Article  Google Scholar 

  • Im ES, Ahn JB, Remedio AR, Kwon WT (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: focus on the Korean peninsula. Int J Climatol 28:1861–1877

    Article  Google Scholar 

  • Janssen JAM (1997) Does wind stress depend on sea-state or not?—a statistical error analysis of Hexmax data. Bound Layer Meteorol 83:479–503

    Article  Google Scholar 

  • Jones ISF, Toba Y (2001) Historical drag expressions. In: Toba Y, Smith SD, Ebuchi N (eds) Wind stress over the Ocean. Cambridge Univ. Press, New York, pp 52–53

    Chapter  Google Scholar 

  • Ju LX, Wang HJ, Jiang DB (2007) Simulation of the last glacial maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 248:376–390

    Article  Google Scholar 

  • Kang S, Im ES, Ahn JB (2014) The impact of two land-surface schemes on the characteristics of summer precipitation over East Asia from the RegCM4 simulations. Int J Climatol. doi:10.1002/joc.3998

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3), NCAR Tech. Note, NCAR/TN-420+STR

  • Li T, Zhou GQ (2010) Preliminary results of a regional air–sea coupled model over East Asia. Chin Sci Bull 55:2295–2305

    Article  Google Scholar 

  • Li Y, Gao Z, Lenschow DH, Chen F (2010) An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Bound Layer Meteorol 137:153–165

    Article  Google Scholar 

  • Li W, Feng J, Chen S, Wang L (2012) Relationship between wintertime precipitation in South China and air–sea heat fluxes. Atmos Sci Lett 13:113–119

    Article  Google Scholar 

  • Li Y, Gao Z, Li D, Wang L, Wang H (2014) An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions. Geosci Model Dev 7:515–529

    Article  Google Scholar 

  • Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120:326–344

    Article  Google Scholar 

  • Oost WA, Komen GJ, Jacobs CMJ, van Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound Layer Meteorol 103:409–438

    Article  Google Scholar 

  • Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10:1885–1908

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, Da Rocha RP, Sloan LC, Steiner AL (2007) Reglonal climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteor Soc 88:1395–1409

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice in summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Simpson JS, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36

    Article  Google Scholar 

  • Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) The coupling of the common land model (CLM0) to a regional climate model (RegCM). Theor Appl Climatol 82:225–243

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh SN, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33:869–892

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Turuncoglu UU, Giuliani G, Elguindi N, Giorgi F (2013) Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results. Geosci Model Dev 6:283–299

    Article  Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18

    Google Scholar 

  • Wang Y, Tao WK, Simpson J (1996) The impact of Ocean surface fluxes on a TOGA COARE convective system. Mon Weather Rev 124:2753–2763

    Article  Google Scholar 

  • Wang Y, Tao WK, Simpson J, Lang S (2003) The sensitivity of tropical squall lines to surface fluxes: three-dimensional cloud-resolving model simulations. Q J Roy Meteor Soc 129:987–1006

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644

    Article  Google Scholar 

  • Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. J Clim 26:5689–5697

    Article  Google Scholar 

  • Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western north Pacific summer monsoon? J Clim 26:2353–2367

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Graziano Giuliani for his support on the RegCM model codes, and Prof. Tim Li for discussions. We are grateful to two anonymous reviewers for their careful review and valuable comments, which led to substantial improvement of this manuscript. The first author (Y. Li) was supported by the Hong Kong Research Grant Council’s Early Career Scheme (Ref. No. 104712), the National Natural Science Foundation of China (No. 41475085), the National Basic Research Program of China (No. 2013CB430301), and the Project of Global Change and Air–Sea Interaction (No. GASI-03-IPOVAI-04). WR Huang was supported by the Ministry of Science and Technology of Taiwan, ROC under grant no. MOST 104-2111-M-003-001, MOST 103-2111-M-003-001 and MOST 103-2621-M-492-001. High performance computing resources were provided by the National Computational Infrastructure (NCI) of Australia through the Merit Allocation Scheme, and NCI’s partnership with Intersect Ltd., NSW, Australia. NCI is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yung Tam.

Appendix: Ocean surface flux schemes in RegCM4

Appendix: Ocean surface flux schemes in RegCM4

BATS1e scheme uses constant ocean surface roughness length. Roughness length for wind (z0m), temperature (z0h) and humidity (z0q) are all set to be the constant value of 2 × 10−4 m. Then neutral exchange coefficient for momentum C MN is calculated through

$$C_{\text{MN}} = \left( {\frac{k}{{\log (z/z_{{0{\text{m}}}} )}}} \right)^{2}$$
(1)

In this equation, k is von Kármán constant and equals 0.4, z is the height of lowest model level. Exchange coefficient for momentum (C M) depends on the bulk Richardson number Ri B

$$C_{\text{M}} = C_{\text{MN}} (1 + 24.5\sqrt { - C_{\text{MN}} Ri_{\text{B}} } ),\;{\text{if}}\;Ri_{\text{B}} < 0$$
(2)
$$C_{\text{M}} = \frac{{C_{\text{MN}} }}{{1 + 11.5Ri_{\text{B}} }},\;{\text{if}}\;Ri_{\text{B}} > 0$$
(3)

Exchange coefficients for heat (C H) and moisture (C E) are assumed to be the same as C M. Then momentum, sensible heat and latent heat fluxes (τ, H and LE) are given by

$$\tau = \rho C_{\text{M}} u^{2}$$
(4)
$$H = - \rho c_{p} C_{\text{H}} u\varDelta \theta$$
(5)
$$LE = - L_{e} \rho C_{\text{E}} u\varDelta q$$
(6)

Here, u is the wind speed at lowest model level, Δθ(Δq) is the difference of potential temperature (specific humidity) between the lowest model level and the Earth’s surface, ρ is air density, c p is specific heat of air, and L e is latent heat of vaporization.

In Zeng1 and Zeng2 schemes, z0m, z0h and z0q are dependent on friction velocity u *. The only difference between these two schemes is the calculation of z0m:

$$z_{{ 0 {\text{m}}}} = 0.0065\frac{{u_{*}^{2} }}{g}_{ } \left( {\text{for Zeng1}} \right)$$
(7)
$$z_{{ 0 {\text{m}}}} = 0.013\frac{{u_{*}^{2} }}{g} + 0.11\frac{\nu }{{u_{*} }}_{ } \left( {\text{for Zeng2}} \right)$$
(8)

In both schemes, z0h and z0q are calculated as

$$z_{{ 0 {\text{h}}}} = z_{{ 0 {\text{q}}}} = \frac{{z_{{ 0 {\text{m}}}} }}{{\exp (2.67(\frac{{u_{*} z_{{ 0 {\text{m}}}} }}{\nu })^{0.25} - 2.57)}}$$
(9)

Here ν is the kinematic viscosity of air. The stability parameter ζ is related to Ri B as:

$$\zeta = Ri_{\text{B}} \frac{{\log (z/z_{{0{\text{m}}}} )}}{{1 - 5Ri_{\text{B}} }},{\text{ if}}\;Ri_{\text{B}} > 0$$
(10)
$$\zeta = Ri_{\text{B}} \log (z/z_{{ 0 {\text{m}}}} ),{\text{ if}}\;Ri_{\text{B}} < 0$$
(11)

Finally, τ, H and LE are given by:

$$\tau = \rho \frac{{k^{2} }}{{[\ln (z/z_{{0{\text{m}}}} ) - \psi_{\text{M}} (\zeta ) + \psi_{\text{M}} (\zeta z_{{0{\text{m}}}} /z)]^{2} }}u_{{}}^{2}$$
(12)
$$H = - \rho c_{\text{p}} \frac{{k^{2} }}{{[\ln (z/z_{{0{\text{m}}}} ) - \psi_{\text{M}} (\zeta ) + \psi_{\text{M}} (\zeta z_{{0{\text{m}}}} /z)][\ln (z/z_{{0{\text{h}}}} ) - \psi_{\text{H}} (\zeta ) + \psi_{\text{H}} (\zeta z_{{0{\text{h}}}} /z)]}}u\varDelta \theta$$
(13)
$$LE = - \rho L_{e} \frac{{k^{2} }}{{[\ln (z/z_{{0{\text{m}}}} ) - \psi_{\text{M}} (\zeta ) + \psi_{\text{M}} (\zeta z_{{0{\text{m}}}} /z)][\ln (z/z_{{0{\text{q}}}} ) - \psi_{\text{H}} (\zeta ) + \psi_{\text{H}} (\zeta z_{{0{\text{q}}}} /z)]}}u\varDelta q$$
(14)

Here \(\psi_{\text{M}}\) and \(\psi_{\text{H}}\) are atmospheric stability functions proposed by Dyer (1974):

$$\psi_{\text{M}} (\zeta ) = \ln [(\frac{1 + x}{2})^{2} (\frac{{1 + x^{2} }}{2})] - 2\arctan (x) + \frac{\pi }{2}$$
(15)
$$\psi_{\text{H}} (\zeta ) = 2\ln (\frac{1 + y}{2})$$
(16)

with

$$x = (1 - 16\zeta )^{1/4}$$
(17)
$$y = (1 - 16\zeta )^{1/2}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YB., Tam, CY., Huang, WR. et al. Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north Pacific by RegCM4. Clim Dyn 46, 2487–2505 (2016). https://doi.org/10.1007/s00382-015-2714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2714-y

Keywords

Navigation