Skip to main content
Log in

Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Interactions between soil moisture, evapotranspiration (ET), atmospheric moisture fluxes and precipitation are complex. It is difficult to attribute the variations of one variable to another. In this study, we investigate the influence of atmospheric moisture fluxes and land surface soil moisture on local precipitation, with a focus on the southern United States (U.S.), a region with a strong humidity gradient and intense moisture fluxes. Experiments with the Weather Research and Forecasting model show that the variation of moisture flux convergence (MFC) is more important than that of soil moisture for precipitation variation over the southern U.S. Further analyses decompose the precipitation change into several contributing factors and show that MFC affects precipitation both directly through changing moisture inflow (wet areas) and indirectly by changing the precipitation efficiency (transitional zones). Soil moisture affects precipitation mainly by changing the precipitation efficiency, and secondly through direct surface ET contribution. The greatest soil moisture effects are over transitional zones. MFC is more important for the probability of heavier rainfall; soil moisture has much weaker impact on rainfall probability and its roles are similar for the probability of intermediate-to-heavy rainfall (>10 mm day−1). Although MFC is more important than soil moisture for precipitation over most regions, the impact of soil moisture could be large over certain transitional regions. At the submonthly time scale, the African Sahel appears to be the only major region where soil moisture has a greater impact than MFC on precipitation. This study provides guidance to understanding and further investigation of the roles of local land surface processes and large-scale circulations on precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Actually we performed the same experiments with another convection scheme: Grell-Dévényi scheme (Grell and Dévényi 2002). The results are qualitatively similar, except for the model biases, which are different.

References

  • Asharaf S, Dobler A, Ahrens B (2012) Soil moisture-precipitation feedback processes in the indian summer monsoon season. J Hydrometeorol 13:1461–1474

    Article  Google Scholar 

  • Banacos PC, Schultz DM (2005) The use of moisture flux convergence in forecasting convective initiation: historical and operational perspectives. Weather Forecast 20:351–366

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-year monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chen M et al (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. doi:10.1029/2007JD009132

    Google Scholar 

  • Cook KH, Vizy EK, Launer ZS, Patricola CM (2008) Springtime intensification of the great plains low-level jet and midwest precipitation in GCM simulations of the twenty-first century. J Clim 21:6321–6340

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10:278–288

    Article  Google Scholar 

  • D’Odorico P, Porporato A (2004) Preferential states in soil moisture and climate dynamics. Proc Natl Acad Sci USA 101:8848–8851

    Article  Google Scholar 

  • Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: mean monsoon and daily precipitation. J Clim 14:2381–2403

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Ek MB et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34:367–378. doi:10.1029/96RG01927

    Article  Google Scholar 

  • Findell KL, et al. (2011) Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nature Geosci 4(7). doi:10.1038/ngeo1174

  • Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14). doi:10.1029/2002GL015311

  • Guo Z, Dirmeyer PA (2013) Interannual variability of land-atmosphere coupling strength. J Hydrometeorol 14:1636–1646

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Jin Q, Wei J, Yang Z-L (2014) Positive response of Indian summer rainfall to middle east dust. Geophys Res Lett 41:4068–4074. doi:10.1002/2014GL059980

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Koster RD et al (2006) GLACE: the global land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

    Article  Google Scholar 

  • Koster RD et al (2011) The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822

    Article  Google Scholar 

  • Li W, Li L, Fu R, Deng Y, Wang H (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Clim 24:1499–1506

    Article  Google Scholar 

  • Li L, Li W, Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim Dyn 41:613–631

    Article  Google Scholar 

  • Liang X-Z, Li L, Kunkel KE, Ting M, Wang JXL (2004) Regional climate model simulation of U.S. Precipitation during 1982–2002. Part I: annual cycle. J Clim 17:3510–3529

    Article  Google Scholar 

  • Lin Y-L, Rarley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Mei R, Wang G (2012) Summer land-atmosphere coupling strength in the United States: comparison among observations, reanalysis data, and numerical models. J Hydrometeorol 13:1010–1022

    Article  Google Scholar 

  • Mesinger Fedor et al (2006) North American regional reanalysis. Bull Amer Meteor Soc 87:343–360

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA–NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S (2005) Warm season rainfall variability over the U.S. Great plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18:1808–1830

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S (2013) Atmosphere-land surface interactions over the southern great plains: characterization from pentad analysis of DOE ARM field observations and NARR. J Clim 26:875–886

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Clim 12:722–741

    Article  Google Scholar 

  • Schubert S et al (2009) A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim 22:5251–5272

    Article  Google Scholar 

  • Skamarock WC, et al. (2008) A description of the advanced research WRF version 3. 125 pp., NCAR Tech. Note NCAR/TN–475 + STR

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Su H, Yang Z-L, Dickinson RE, Wei J (2014) Spring soil moisture–precipitation feedback in the Southern Great Plains: how is it related to large-scale atmospheric conditions? Geophys Res Lett 41:1283–1289. doi:10.1002/2013GL058931

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J Hydrometeorol 7:252–270

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons David B (2003) The changing character of precipitation. Bull Amer Meteor Soc 84:1205–1217

    Article  Google Scholar 

  • Weaver SJ, Nigam S (2008) Variability of the great plains low-level jet: large-scale circulation context and hydroclimate impacts. J Clim 21:1532–1551

    Article  Google Scholar 

  • Weaver SJ, Ruiz-Barradas A, Nigam S (2009) Pentad evolution of the 1988 drought and 1993 flood over the great plains: an NARR perspective on the atmospheric and terrestrial water balance. J Clim 22:5366–5384

    Article  Google Scholar 

  • Wei J, Dirmeyer PA (2012) Dissecting soil moisture-precipitation coupling. Geophys Res Lett 39:L19711. doi:10.1029/2012GL053038

    Article  Google Scholar 

  • Wei J, Dickinson RE, Chen H (2008) A negative soil moisture-precipitation relationship and its causes. J Hydrometeorol 9:1364–1376

    Article  Google Scholar 

  • Wei J, Dirmeyer PA, Bosilovich MG, Wu R (2012) Water vapor sources for the Yangtze River Valley rainfall: climatology, variability, and implications for rainfall forecasting. J Geophys Res 117:D05126. doi:10.1029/2011JD016902

    Google Scholar 

  • Wei J, Dirmeyer PA, Wisser D et al (2013) Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. J Hydrometeorol 14:275–289

    Article  Google Scholar 

  • Xie P et al (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626

    Article  Google Scholar 

  • Yamada TJ, Koster RD, Kanae S, Oki T (2007) Estimation of predictability with a newly derived index to quantify similarity among ensemble members. Mon Weather Rev 135:2674–2687

    Article  Google Scholar 

  • Zeng N, Neelin JD (1999) A land-atmosphere interaction theory for the tropical deforestation problem. J Clim 12:857–872

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their insightful comments on the manuscript and Drs. Robert Dickinson, Bing Pu, and Bo Sun for their suggestions on an early draft. The research was conducted with financial support from the Jackson School of Geosciences at UT-Austin, King Abdullah University of Science and Technology, and NASA (NNX12AJ51G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Su, H. & Yang, ZL. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim Dyn 46, 467–481 (2016). https://doi.org/10.1007/s00382-015-2593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2593-2

Keywords

Navigation