Skip to main content
Log in

Revisiting El Niño Modokis

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The suggestion that there exist two types of El Niño in the tropical Pacific has generated a debate in the community. Applying various linear and non-linear approaches and composite analysis technique on observed and reanalyzed climate datasets primarily for the 1950–2010 period, we revisit the variability of the tropical Pacific in the light of this debate. Our objective is to examine whether the proposed El Niño Modokis need a classification distinct from canonical El Niños. Even if the distinction is subject to short data records, we demonstrate that the El Niño Modoki events indeed display a seasonal evolution and teleconnections different from the canonical El Niños, and that the distinction is not subject to inclusion of the two extreme El Niños 1982 and 1997 as canonical El Niños. We show that the El Niño Modoki events are not an artifact associated with the orthogonality constraint associated with the EOF technique. Our cluster analysis shows that evolutions of the canonical El Niño and El Niño Modokis through various seasons differ from one another. Importantly, the dynamic and thermodynamic air–sea coupling strength is distinctly different between the El Niño Modoki and the canonical El Niño events. We find that, dynamic feedback intensity is stronger for El Niño Modoki (canonical El Niño) during boreal summer (winter); though the air–sea coupling strength, a major contributor to Bjerknes feedback, is maximum for Modokis during the developing stages, it decreases thereafter. In case of thermodynamic feedback intensity, SST-wind-evaporation feedback is dominant for El Niños while SST-SHF feedback is important during El Niño Modokis. However, we find that the thermodynamic feedback values significantly differ across the flux datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.japantimes.co.jp/news/2004/07/24/national/mock-el-nino-culprit-behind-heat-wave-floods-professor/.

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the south american sector. Part I: surface climate. Mon Wea Rev 116:505–524

    Article  Google Scholar 

  • An S-I, Jin F-F (2004) Nonlinearity and asymmetry of ENSO*. J Clim 17:2399–2412

    Article  Google Scholar 

  • Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on the sub-regional Indian summer monsoon rainfall. J Nat Hazards. doi:10.1007/s11069-006-9091-0

    Google Scholar 

  • Ashok K, Behera S, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Ashok K, Tam C-Y, Lee W-J (2009) ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:L12705. doi:10.1029/2009GL038847

    Article  Google Scholar 

  • Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett 39:L02701. doi:10.1029/2011GL050232

    Google Scholar 

  • Ashok K, Nagaraju C, Sengupta A, Pai S (2014) Decadal Changes in the relationship between the Indian and Australian summer monsoons. Clim Dyn. doi:10.1007/s00382-012-1625-4

    Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Behera S, Yamagata T (2010) Imprint of the El Niño Modoki on decadal sea level changes. Geophys Res Lett 37:L23702. doi:10.1029/2010GL045936

    Google Scholar 

  • Behera SK, Rao SA, Saji HN, Yamagata T (2003) Comments on “a cautionary note on the interpretation of EOFs”. J Clim 16:1087–1093

    Article  Google Scholar 

  • Bejarano L, Jin FF (2008) Coexistence of equatorial coupled modes of ENSO*. J Clim 21:3051–3067

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Cai W, Cowan T (2009) La Nina Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi:10.1029/2009GL037885

    Article  Google Scholar 

  • Capotondi A et al (2014) Understanding ENSO diversity. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00117.1

    Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 136:2999–3017

    Article  Google Scholar 

  • Chen G, Tam C-Y (2010) Different impact of two kinds of Pacific Ocean warming on tropical cyclone frequency over western North Pacific. Geophys Res Lett 37:L01803. doi:10.1029/2009GL041708

    Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3–73

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the north Pacific during boreal winter since 1900. J Clim 17:3109–3124

    Article  Google Scholar 

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862. doi:10.1002/joc.631

    Article  Google Scholar 

  • Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Clim 15:216–225. doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2

    Article  Google Scholar 

  • Donguy JR, Dessier A (1983) El Niño-like events observed in the tropical Pacific. Mon Wea Rev 111:2136–2139. doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2

    Article  Google Scholar 

  • Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi–sea surface temperature ensemble experiments with high-resolution meteorological research institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117(D16118):668. doi:10.1029/2012JD017874.31

    Google Scholar 

  • Gierach MM, Lee T, Turk D, McPhaden MJ (2012) Biological response to the1997–1998 and 2009–2010 El Niño events in the equatorial Pacific Ocean. Geophys Res Lett 39:L10602. doi:10.1029/2012GL051103

    Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi:10.1029/2010JC006695

    Google Scholar 

  • Guilyardi E, Pascale B, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a Coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713. doi:10.1029/2009GL040100

    Article  Google Scholar 

  • Jeong HI et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two types of ENSO during boreal winter. Clim Dyn. doi:10.1007/s00382-012-1359-3

    Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708. doi:10.1029/2006GL027221

    Article  Google Scholar 

  • Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26:4816–4827

    Article  Google Scholar 

  • Jolliffe IT (1989a) Rotation of principal components: choice of normalization constraint. J Appl Stat 22(42813):1989

    Google Scholar 

  • Jolliffe IT (1989b) Rotation of ill-defined principal components. Appl Stat 38:139–147

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Keshavamurty RN (1982) Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern oscillation. J Atmos Sci 39:1241–1259. doi:10.1175/1520469(1982)039<1241:ROTATS>2.0.CO;2

    Article  Google Scholar 

  • Kim TK, Jin FF (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first centuary simulations of the CMIP3 models. Clim Dyn 36:1609–1627. doi:10.1007/s00382-010-0872-5

    Article  Google Scholar 

  • Kim HM, Webster PJ, Judith AC (2009) Impact of shifting patterns of pacific ocean warming on north atlantic tropical cyclones. Science. doi:10.1126/science.1174062

    Google Scholar 

  • Kim DW, Choi KS, Byun HR (2012a) Effects of El Niño Modoki on winter precipitation in Korea. Clim Dyn 38:1313–1324. doi:10.1007/s00382-011-1114-1

    Article  Google Scholar 

  • Kim JS, Kim KY, Yeh SW (2012b) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res 117:C06014. doi:10.1029/2012JC008003

    Google Scholar 

  • Kug JS, Jin F-F, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(1499):1515. doi:10.1175/2008JCLI2624.1

    Google Scholar 

  • Kug JS, Choi J, An S-I, Jin F-F, Wittenberg AT (2010) Warm pool and cold tongue El Niño Events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239. doi:10.1175/2009JCLI3293.1

    Article  Google Scholar 

  • Kumar K, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314(5796):115–119. doi:10.1126/science.1131152

    Article  Google Scholar 

  • L’Heureux ML, Collins DC, Hu Z-Z (2012) Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern oscillation. Clim Dyn 40:1223–1236. doi:10.1007/s00382-012-1331-2

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592.33

    Google Scholar 

  • Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Clim 25:5361–5373

    Article  Google Scholar 

  • Liu WT (1988) Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J Geophys Res 93(C6):6749–6760. doi:10.1029/JC093iC06p06749

    Article  Google Scholar 

  • Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air–sea coupling associated with the indian ocean dipole diagnosed from 23 WCRP CMIP3 Models*. J Clim 24:4941–4958. doi:10.1175/2011JCLI4041.1

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J Clim 25:4275–4293. doi:10.1175/JCLI-D-11-00178.1

    Article  Google Scholar 

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi:10.1029/2012GL051826

    Google Scholar 

  • Mestas-Nuñez AM (2000) Orthogonality properties of rotated empirical modes. Int J Climatol 20:1509–1516. doi:10.1002/1097-0088(200010)20

    Article  Google Scholar 

  • Meyers SD, Brien JJO, Thelin E (1999) Reconstruction of monthly SST in the tropical Pacific Ocean during 1868–1993 using adaptive climate basis functions. Mon Wea Rev 127:1599–1612

    Article  Google Scholar 

  • Meyers G, Mcintosh P, Pigot L, Pook M (2006) The years of El Niño, La Niña and interactions with the tropical Indian Ocean. J Clim 20:2872–2880

    Article  Google Scholar 

  • Navarra A, Simoncini V (2010) A guide to empirical orthogonal functions for climate data analysis, 1st edn. Springer, Berlin, p 200

    Book  Google Scholar 

  • Navarra A, Ward MN, Miyakoda K (1999) Tropical-wide teleconnections and oscillation. I: teleconnection indices and type I/II states. Q J R Meteorol Soc 125:2909–2935

    Article  Google Scholar 

  • Newman M, Shin S-I, Alexander MA (2011) Natural variation in ENSO flavors. Geophy Res Lett. doi:10.1029/2011GL047658

    Google Scholar 

  • Nicholls N (2008) Recent trends in the seasonal and temporal behaviour of the El Niño Southern oscillation. Geophys Res Lett 35:L19703

    Article  Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the northern hemisphere circulation. J Meteor Soc Japan 67:375–383

    Google Scholar 

  • North GR, Bell TL, Chalan RF (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon Wea Rev 110:354–384

    Article  Google Scholar 

  • Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2010) Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys Res Lett 37:L07807. doi:10.1029/2010GL042798

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031.35

    Google Scholar 

  • Ren HL, Jin FF (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim 26:6506–6523. doi:10.1175/JCLI-D-12-00601.1

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335. doi:10.1002/joc.3370060305

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole events on global climate. Clim Res 25:151–169

    Article  Google Scholar 

  • Simmons AJ, Gibson JK (2000) The ERA-40 project plan. Technical report, ERA-40 project report series 1, ECMWF, Reading, United Kingdom, 63

  • Singh A, Delcroix T (2013) Eastern and Central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep Sea Res Part 1 Oceanogr Res Pap 82:32–43

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Stephens C, Levitus S, Antonov J, Boyer T (2001) On the Pacific Ocean regime shift. Geophys Res Lett 28:3721–3724. doi:10.1029/2000GL012813

    Article  Google Scholar 

  • Stevenson S, Kemper BF, Jochum M, Rajagopalan B, Yeager SG (2010) ENSO model validation using wavelet probability analysis. J Clim 23:5540–5547. doi:10.1175/2010JCLI3609.1

    Article  Google Scholar 

  • Sun DZ, Yongqiang Yu, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304. doi:10.1175/2008JCLI2267.1

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Google Scholar 

  • Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22:3167–3174. doi:10.1175/2008JCLI2589.1

    Article  Google Scholar 

  • Taschetto AS, Ummenhofer CC, Sen Gupta A, England MH (2009) Effect of anomalous warming in the central Pacific on the Australian monsoon. Geophys Res Lett 36:L12704. doi:10.1029/2009GL038416

    Article  Google Scholar 

  • Taschetto AS et al (2010) Australian monsoon variability driven by a Gill–Matsuno-type response to central west Pacific warming. J Clim 23:4717–4736. doi:10.1175/2010JCLI3474.1.36

    Article  Google Scholar 

  • Trenberth KE, Smith L (2009) Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J Clim 22:2978–2991. doi:10.1175/2008JCLI2691.1

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701. doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge Univ Press, Cambridge, p 494

    Google Scholar 

  • Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to Inter–El Niño variations. J Clim 20:4211–4226. doi:10.1175/JCLI4228.1

    Article  Google Scholar 

  • Wang C, Weisberg RH, Yang H (1999) Effects of the wind speed–evaporation–SST feedback on the El Niño-southern oscillation. J Atmos Sci 56:1391–1403. doi:10.1175/1520-0469(1999)056<1391:EOTWSE>2.0.CO;2

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Weare BC, Navato AR, Newell RE (1976) Empirical orthogonal analysis of Pacific sea surface temperatures. J Phys Oceanogr 6(5):671–678

    Article  Google Scholar 

  • Weng H, Ashok K, Behera S, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Weng H, Behera S, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6.37

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic Oxford UK

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Xiang B, Wang B, Ding Q (2012) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Clim Dyn 39(6):1413

    Article  Google Scholar 

  • Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn. doi:10.1007/s00382-012-1427-8

    Google Scholar 

  • Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350. doi:10.1034/j.1600-0870.1994.t01-1-00001.x

    Article  Google Scholar 

  • Yamagata T et al (2004) The coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s clim 147:189–211

    Google Scholar 

  • Yeh SW et al (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yeh SW, Kirtman BP, Kug J-S, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704

    Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884. doi:10.1175/2010JCLI3171.1

    Article  Google Scholar 

  • Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483.1

    Google Scholar 

Download references

Acknowledgments

The authors thank three anonymous reviewers for the constructive comments. The authors acknowledge discussions with Drs. P. Terray, M. Lengaigne, M. J. McPhaden and A. T. Wittenberg. Dr. P. Terray is also acknowledged for his code on STL procedure. The CCCR, IITM is fully funded by the MoES, Govt. of India. Part of the work by KA has been carried out under the agies of the MoES-NERC water cycle program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karumuri Ashok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig A1: 5-Month smoothed time series of the Niño3 and EMI index (EPS 2521 kb)

382_2015_2555_MOESM2_ESM.eps

Fig A2: Composite SSTA in  °C during strong El Niño events (a) averaged over 2 boreal summers, namely JJA seasons of 1982, 1997, and (b) 2 boreal winters, namely DJF seasons of 1982–1983, 1997–1998 (EPS 6452 kb)

382_2015_2555_MOESM3_ESM.eps

Fig A3: Scatter plots of PC1 and PC2 (from EOF analysis of tropical Pacific SSTA variability for 1) values during strong El Niño, and El Niño Modoki events. X-axis (Y-axis) represents normalized PC1 (PC2) values. (a) fall and (b) spring (EPS 2424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marathe, S., Ashok, K., Swapna, P. et al. Revisiting El Niño Modokis. Clim Dyn 45, 3527–3545 (2015). https://doi.org/10.1007/s00382-015-2555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2555-8

Keywords

Navigation