Skip to main content

Advertisement

Log in

Impacts of warming and water vapor content on the decrease in light rain days during the warm season over eastern China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Based on daily rainfall data collected at 395 gauge stations over eastern China during 1979–2009, the variation in light rain days with intensities of 0.1–10 mm day−1 in the summer half of the year was analyzed. Results indicate that both the light rain amount and the number of light rain days decline distinctly, with trends of −4.89 mm (10 year)−1 and −2.48 days (10 year)−1, respectively. The first two principal components of EOF analysis on light rain days not only show a long-term decrease, but also depict regional differences; specifically, light rain days decline more distinctly in northeastern and southern regions of eastern China. Spatial and temporal features, as well as the periods derived from the EOF analysis of temperature, precipitable water content, and relative humidity in the lower troposphere, coincide with those of light rain days. Composite analysis also suggests that there are fewer light rain days in years with lower relative humidity and precipitable water content in the lower troposphere, while there are fewer light rain days in years with higher tropospheric temperatures. According to the Clausius–Clapeyron equation and the relative humidity equations, relative humidity over eastern China during the period studied decreases by 5.5 % due to lower-tropospheric warming, and decreases by 0.16 % because of the decrease in specific humidity in the same period. Both warming and water vapor content are the reasons for light rain reduction, and warming is deemed the primary cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constrains on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Crochet P (2007) A study of regional precipitation trends in Iceland using a high-quality gauge network and ERA-40. J Clim 20(18):4659–4677

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dessler AE, Davis SM (2010) Trends in tropospheric humidity from reanalysis systems. J Geophys Res. doi:10.1029/2010JD014192

    Google Scholar 

  • Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett. doi:10.1029/2006GL028083

    Google Scholar 

  • Fan J, Leung LR, Li Z, Morrison H, Chen H, Zhou Y, Qian Y, Wang Y (2012) Aerosol impacts on clouds and precipitation in eastern China: results from bin and bulk microphysics. J Geophys Res. doi:10.1029/2011JD016537

    Google Scholar 

  • Fu CB, Dan L (2013) Trends in the different grades of precipitation over South China during 1960–2010 and the possible link with anthropogenic aerosols. Adv Atmos Sci 31(2):480–491

    Article  Google Scholar 

  • Fu J, Qian W, Lin X, Chen D (2008) Trends in graded precipitation in China from 1961 to 2000. Adv Atmos Sci 25(2):267–278

    Article  Google Scholar 

  • Fujibe F (2013) Clausius–Clapeyron-like relationship in multidecadal changes of extreme short-term precipitation and temperature in Japan. Atmos Sci Lett 14(3):127–132

    Article  Google Scholar 

  • Fujibe F, Yamazaki N, Katsuyama M, Kobayashi K (2005) The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. SOLA 1:41–44. doi:10.2151/sola.2005012

    Article  Google Scholar 

  • Gong DY, Shi PJ, Wang JA (2004) Daily precipitation changes in the semi-arid region over northern China. J Arid Environ 59(4):771–784

    Article  Google Scholar 

  • Gong DY, Ho CH, Chen D, Qian Y, Choi YS, Kim J (2007) Weekly cycle of aerosol–meteorology interaction over China. J Geophys Res 112:D22202. doi:10.1029/2007JD008888

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.11322027

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Article  Google Scholar 

  • Guo Y, Ding Y (2009) Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J Clim 22(4):1037–1051

    Article  Google Scholar 

  • Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at different temperatures. J Geophys Res. doi:10.1029/2009JD013384

    Google Scholar 

  • Hahn CJ, Rossow WB, Warren SG (2001) ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J Clim 14(1):11–28

    Article  Google Scholar 

  • Hardwick Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett. doi:10.1029/2010GL045081

    Google Scholar 

  • Huang G, Wen GH (2013) Spatial and temporal variations of light rain days over China and the mid-high latitudes of the northern hemisphere. Chin Sci Bull 58(12):1402–1411

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu ML, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454(1971):903–995

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Synthesis report, working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science bases. Cambridge University Press, Cambridge

    Google Scholar 

  • Isaac V, Van Wijngaarden WA (2012) Surface water vapor pressure and temperature trends in North America during 1948–2010. J Clim 25(10):3599–3609

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79(2):231–241

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J Clim 16:3665–3680

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58(9):811–821

    Article  Google Scholar 

  • Lau KM, Wu HT (2007) Detecting trends in tropical rainfall characteristics, 1979–2003. Int J Climatol 27:979–988. doi:10.1002/joc.1454

    Article  Google Scholar 

  • Lenderink G, Van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514

    Article  Google Scholar 

  • Li D, Wei L, Cai Y, Zhang CJ, Feng JY, Yang Q, Yuan YJ, Dong AX (2003) The present facts and the future tendency of the climate change in Northwest China. J Glaciol Geocryol 25(2):135–142 (in Chinese)

    Google Scholar 

  • Li HM, Zhou TJ, Ru RC (2008) Analysis of July–August daily precipitation characteristics variation in Eastern China during 1958–2000. Chin J Atmos Sci 32(2):358–370 (in Chinese)

    Google Scholar 

  • Li J, Yu RC, Yuan WH, Chen HM (2011) Changes in duration-related characteristics of late-summer precipitation over eastern China in the past 40 years. J Clim 24:5683–5690

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M, Qi Y (2005) Observed Trends of precipitation amount, frequency, and intensity in China, 1960–2000. J Geophys Res. doi:10.1029/2004JD004864

    Google Scholar 

  • Liu SC, Fu C, Shiu CJ, Chen JP, Wu F (2009) Temperature dependence of global precipitation extremes. Geophys Res Lett 36:L17702. doi:10.1029/2009GL040218

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M (2011) Where have all the showers gone? Regional declines in light precipitation events in China, 1960–2000. Int J Climatol 31(8):1177–1191

    Article  Google Scholar 

  • Manton MJ, Della-Marta PM, Haylock MR et al (2001) Trends in extreme daily rainfall and termperature in southeast Asia and the south Pacific: 1961–1998. Int J Climatol 21:269–284. doi:10.1002/joc.610

    Article  Google Scholar 

  • Poli P, Healy SB, Dee DP (2010) Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Q J R Meteorol Soc 136(653):1972–1990

    Article  Google Scholar 

  • Qian WH, Lin X (2005) Regional trends in recent precipitation indices in China. Meteorol Atmos Phys 90:193–207

    Article  Google Scholar 

  • Qian WH, Qin A (2008) Precipitation division and climate shift in China from 1960 to 2000. Theor Appl Climatol 93(1–2):1–17

    Article  Google Scholar 

  • Qian WH, Fu J, Yan Z (2007) Decrease of light rain days in summer associated with a warming environment in China during 1961–2005. Geophys Res Let 34:L11705. doi:10.1029/2007GL029631

  • Qian Y, Gong D, Fan J, Leung R, Bennartz R, Chen D, Wang W (2009) Heavy pollution suppresses light rain in China: observations and modeling. J Geophys Res 114:D00K02. doi:10.1029/2008JD011575

    Google Scholar 

  • Qian Y, Gong D, Leung R (2010) Light rain days change over North America, Europe, and Asia for 1973–2009. Atmos Sci Lett 11(4):301–306

    Article  Google Scholar 

  • Qian C, Fu CB, Wu ZH (2011) Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J Clim 24(20):5292–5302

    Article  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796. doi:10.1126/science.287.5459.1793

    Article  Google Scholar 

  • Rosenfeld D (2006) Aerosols, clouds, and climate. Science 312:1323–1324

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci USA 98:5975–5980. doi:10.1073/pnas.101122798

    Article  Google Scholar 

  • Rosenfeld D, Dai J, Yu X, Yao ZY, Xu XH, Yang X, Du CL (2007) Inverse relations between amounts of air pollution and orographic precipitation. Science 315:1396–1398

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313. doi:10.1126/science.1160606

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287

    Article  Google Scholar 

  • Rossow WB, Walker AW, Garder LC (1993) Comparison of ISCCP and other cloud amounts. J Clim 6(12):2394–2418

    Article  Google Scholar 

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res. doi:10.1029/2009JD012442

    Google Scholar 

  • Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107(D14):AAC 5-1–AAC 5-12

    Google Scholar 

  • Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim Change 39:667–694

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1):123

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett. doi:10.1029/2005GL022760

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 4(7–8):741–758

    Article  Google Scholar 

  • Utsumi N, Seto S, Kanae S, Eiji Maeda E, Oki T (2011) Does higher surface temperature intensify extreme precipitation? Geophy Res Lett. doi:10.1029/2011GL048426

    Google Scholar 

  • Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophy Res Lett. doi:10.1029/2005GL022574

    Google Scholar 

  • Wang WC, Zhang QY, Easterling DR, Karl TR (1993) Beijing cloudiness since 1875. J Clim 6(10):1921–1927

    Article  Google Scholar 

  • Wang B, Wu R, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the Western North Pacific-East Asian. J Clim 14(20):4073–4090

    Article  Google Scholar 

  • Warner J, Twomey S (1967) The production of cloud nuclei by cane fires and the effect on cloud doplet concentration. J Atmos Sci 24:704–706

    Article  Google Scholar 

  • Wu FT, Fu CB (2013) Change of precipitation intensity spectra at different spatial Scales under warming conditions. Chin Sci Bull 58(12):1385–1394

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41

    Article  Google Scholar 

  • Wu J, Liu J (2013) Variations of cloud fraction over East Asia under global warming conditions in the past 20 years. J Trop Meteorol 19(2):171–180

    Google Scholar 

  • Wu R, Hu ZZ, Kirtman BP (2003a) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu S, Liang J, Li C (2003b) Relationship between the intensity of South China sea summer monsoon and the precipitation in raining seasons in China. J Trop Meteorol 19(B09):25–36

    Google Scholar 

  • Wu ZH, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104:14889

    Article  Google Scholar 

  • Yan Z, Yang C (2000) Geographic patterns of extreme climate changes in China during 1951–1997. Clim Environ Res 5(3):267–272 (in Chinese)

    Google Scholar 

  • Yu RC, Li J (2012) Hourly rainfall changes in response to surface air temperature over Eastern Contiguous China. J Clim 25(19):6851–6861

    Article  Google Scholar 

  • Yu RC, Zhou TJ (2007) Seasonality and three-dimensional structure of interdecadal change in the East Asian monsoon. J Clim 20:5344–5355

    Article  Google Scholar 

  • Yu RC, Wang B, Zhou T (2004) Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J Clim 17(13):2702–2713

    Article  Google Scholar 

  • Yu RC, Li J, Yuan WH, Chen HM (2010) Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data. J Clim 23:3390–3396

    Article  Google Scholar 

  • Yuan W, Yu RC, Chen H, Li J, Zhang M (2010) Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J Clim 23:6684–6695

    Article  Google Scholar 

  • Zhai P, Eskridge RE (1997) Atmospheric water vapor over China. J Clim 10(10):2643–2652

    Article  Google Scholar 

  • Zhai P, Sun A, Ren F, Liu X, Gao B, Zhang Q (1999) Changes of climate extremes in China. In: Weather climate extremes. Springer, Netherlands, pp 203–218

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18(7):1096–1108

    Article  Google Scholar 

  • Zhao C, Tie X, Lin Y (2006) A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys Res Lett 33:L11814. doi:10.1029/2006GL025959

    Article  Google Scholar 

  • Zhi X, Xu HM (2013) Comparative analysis on monthly mean characteristic of free atmospheric temperature between three reanalysis datasets and radiosonde dataset in China. Plateau Meteor 32(1):97–109 (in Chinese)

    Google Scholar 

  • Zhu YL, Lin C, Chen HB, Zhang JQ, Peng L, Yu Y (2012) Comparison of two reanalysis data with the RS92 radiosonde data. Clim Environ Res 17(3):381–391 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

Authors cordially thank the anonymous reviewers for their thorough comments and constructive suggestions, which improved the paper quality distinctly. Daily meteorological data and radiosonde data are available at China Meteorological Data Sharing Service System, the monthly cloud data are obtained from the dataset of the International Satellite Cloud Climatology Project (ISCCP), and the ERA Interim dataset come from the European Centre for Medium-range Weather Forecast (ECWMF). We thank all the data sources. This study is sponsored by the National Key Program for Developing Basic Sciences of China (No. 2011CB952003) and the Chinese Natural Science Foundation (41275162). This work is also supported by the Chinese Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, L., Zhao, D. et al. Impacts of warming and water vapor content on the decrease in light rain days during the warm season over eastern China. Clim Dyn 45, 1841–1857 (2015). https://doi.org/10.1007/s00382-014-2438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2438-4

Keywords

Navigation