Skip to main content

Advertisement

Log in

Interdecadal variability of the mega-ENSO–NAO synchronization in winter

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Mega-El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), as two principal components of the global air-sea coupling system, may have synchronous or out-synchronous fluctuations during different epochs. Understanding such connection change is instrumental for climate prediction, particularly the decadal prediction. Results in this study show that mega-ENSO has experienced a notable inter-decadal change in its linkage with the winter NAO during the past 56 years: mega-ENSO was significantly correlated with the NAO during 1957–1981 (or synchronous epoch), while such correlation has broken down since 1982 (or out-synchronous epoch). This marked change might be attributed to a sea surface temperature (SST) forcing change in the North Atlantic, based on the observational and numerical evidences in this study. The synchronous epoch is concurrent with the anomalous tropical North Atlantic (TNA) SST forcing, whereas the out-synchronous epoch is associated with the anomalous extra-tropical North Atlantic (XNA) SST forcing. Two possible reasons may explain how the synchronous behaviors between mega-ENSO and the NAO were tied to the TNA SST anomaly (SSTA). There is a positive feedback between the TNA SSTA and the NAO-like atmosphere anomalies, which helps to “prolong” the NAO impacts from the developing phase through mature phase of mega-ENSO. Additionally, the TNA SSTA itself may induce a NAO-like atmosphere anomaly. Since 1982, the TNA SSTA has been replaced by the XNA SSTA and the latter primarily favors a NAO-neutral state in the atmosphere, which ends the synchronous epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Branstator G (1992) The maintenance of low-frequency atmospheric anomalies. J Atmos Sci 49:1924–1946

    Article  Google Scholar 

  • Branstator G (1995) Organization of storm track anomalies by recurring low-frequency circulation anomalies. J Atmos Sci 52:207–226

    Article  Google Scholar 

  • Branston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Cai M, Mak M (1990) Symbolic relation between planetary and synoptic scale waves. J Atmos Sci 47:2953–2968

    Article  Google Scholar 

  • Chang C-P, Zhang Y, Li T (2000) Interannual and interdecadal variation of the East Asian summer monsoon rainfall and tropical SSTs. Part 1: roles of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Charney JG, Shukla J (1981) Predictability of monsoons. In: Lighthill J, Pearce RP (eds) Monsoon dynamics. Cambridge University Press, New York, pp 99–109

    Chapter  Google Scholar 

  • Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37:L17707

    Google Scholar 

  • Dee DP, Uppala S, Simmons A et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Timlin M (1997) Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J Clim 10:393–408

    Article  Google Scholar 

  • Douglass DH (2010) Topology of Earth’s climate indices and phase-locked states. Phys Let A 374:4164–4168

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Quart J Roy Meteor Soc 106:447–462

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence togeophysical time series. Nonlinear Proc Geophys 11:561–566

    Article  Google Scholar 

  • Hall NMJ (2000) A simple GCM based on dry dynamics and constant forcing. J Atmos Sci 57:1557–1572

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Quart J Roy Meteor Soc 101:637–655

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jin FF, Neelin JD, Ghil M (1994) El Niño on the devil’s staircase: annual subharmonic steps to chaos. Science 264:70–72

    Article  Google Scholar 

  • Jin FF, Pan L, Watanabe M (2006) Dynamics of synoptic eddy and low-frequency flow interaction. Part 1: a linear closure. J Atmos Sci 63:1677–1694

    Article  Google Scholar 

  • Karspeck AR, Cane MA (2002) Tropical Pacific 1976–1977 climate shift in a linear, wind-driven model. J Phys Oceanogr 32(8):2350–2360

    Article  Google Scholar 

  • Kug JS, Jin FF (2009) Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys Res Lett 36. doi:10.1029/2008GL036435

  • Lau NC (1988) Variability of the observed midlatitude storm tracks in relation to lowfrequency changes in the circulation pattern. J Atmos Sci 45:2718–2743

    Article  Google Scholar 

  • Lau NC, Nath MJ (1991) Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J Atmos Sci 48:2589–2613

    Article  Google Scholar 

  • Li J, Wu Z (2012) Importance of autumn Arctic sea ice to northern winter snowfall. Proc Natl Acad Sci USA 109(28):1898. doi:10.1073/pnas.1205075109

    Article  Google Scholar 

  • Lin H, Derome J (1996) Changes in predictability associated with the PNA pattern. Tellus 48A:553–571

    Article  Google Scholar 

  • Lin H, Derome J (2004) Nonlinearity of extratropical response to tropical forcing. J Clim 17:2597–2608

    Article  Google Scholar 

  • Lin H, Wu Z (2011) Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J Clim 24:2801–2813

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak S (1998) ENSO theory. Geophys Res 103(C7):14261–14290

    Article  Google Scholar 

  • Pan L (2005) Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys Res Lett 32:L06707. doi:10.1029/2005GL022427

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon Weather Rev 112:1999–2015

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Swanson KL, Tsonis AA (2009) Has the climate recently shifted? Geophys Res Let 36:L06711. doi:10.1029/2008GL037022

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO–monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wang B, Wu RG, Fu XH (2000) Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding YH, Wu GX (2008) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4463

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang BQ (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA 14:5347–5352

    Article  Google Scholar 

  • Watanabe M, Nitta T (1998) Relative impact of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation. J Clim 11:2837–2857

    Article  Google Scholar 

  • Watanabe M, Nitta T (1999) Decadal changes in the atmospheric circulation and associated surface climate variations in the North Hemisphere winter. J Clim 12:494–510

    Article  Google Scholar 

  • Wu Z, Li J (2008) Prediction of the Asian-Australian monsoon interannual variations with the grid-point atmospheric model of IAP LASG (GAMIL). Adv Atmos Sci 25(3):387–394

    Article  Google Scholar 

  • Wu Z, Li J (2009) Seasonal prediction of the global precipitation annual modes with the grid-point atmospheric model of IAP LASG (GAMIL). Acta Meteor Sinica 23(4):428–437

    Google Scholar 

  • Wu Z, Lin H (2012) Interdecadal variability of the ENSO-North Atlantic Oscillation connection in boreal summer. Quart J Roy Meteor Soc 138:1668–1675. doi:10.1002/qj.1889

    Article  Google Scholar 

  • Wu Z, Wang B, Li J, Jin FF (2009) An emperical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu Z, Li J, Jiang Z, He J (2011) Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Clim Dyn 37:1661–1669

    Article  Google Scholar 

  • Zhang RH, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asia Monsoon: a diagnostic study of the ‘86/87 and ‘91/92 events. J Meteor Soc Japan 74:49–62

    Google Scholar 

Download references

Acknowledgments

We appreciate the ECMWF for providing the ERA-40 and ERA-interim re-analysis data. Zhiwei Wu is jointly supported by the Ministry of Science and Technology of China (Grant Nos. 2015CB453201, 2015CB953904) and the National Natural Science Foundation of China (Grant No. 91437216 and 41205066). This is ESMC publication No. 0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, P. Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Clim Dyn 45, 1117–1128 (2015). https://doi.org/10.1007/s00382-014-2361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2361-8

Keywords

Navigation