Skip to main content
Log in

Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The stochastic skeleton model is a simplified model for the Madden–Julian oscillation (MJO) and intraseasonal-planetary variability in general involving coupling of planetary-scale dry dynamics, moisture, and a stochastic parametrization for the unresolved details of synoptic-scale activity. The model captures the fundamental features of the MJO such as the intermittent growth and demise of MJO wave trains, the MJO propagation speed, peculiar dispersion relation, quadrupole vortex structure, etc. We analyze here the solutions of a stochastic skeleton model with an idealized seasonal cycle, namely a background warm pool state of heating/moistening displacing meridionally during the year. The present model considers both equatorial and off-equatorial components of the envelope of synoptic scale convective activity, which allows for a large diversity of meridionally symmetric and asymmetric intraseasonal events found in nature. These include examples of symmetric events with MJO quadrupole vortex structure, half-quadrupole events with off-equatorial convective heating structure, as well as tilted events with convective heating structure oriented north-westward and associated northward propagation that is reminiscent of the summer monsoon intraseasonal oscillation. The model also reproduces qualitatively the meridional migration of intraseasonal variability during the year, that approximatively follows the meridional migration of the background warm pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajayamohan RS, Khouider B, Majda AJ (2013) Realistic initiation and dynamics of the Madden–Julian oscillation in a coarse resolution aquaplanet GCM. Geophys Res Lett 40:6252–6257

    Article  Google Scholar 

  • Annamalai H, Sperber KR (2005) Regional heat sources and the active and break phases of Boreal summer intraseasonal (30–50 Day) variability. J Atmos Sci 62:2726–2748

    Article  Google Scholar 

  • Biello JA, Majda AJ (2005) A new multiscale model for the Madden–Julian oscillation. J Atmos Sci 62(6):1694–1721

    Article  Google Scholar 

  • Biello JA, Majda AJ (2006) Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden-Julian oscillation. Dyn Atmos Oceans 42(1–4):152–215

    Article  Google Scholar 

  • Chao WC (1987) On the origin of the tropical intraseasonal oscillation. J Atmos Sci 44(15):1940–1949

    Article  Google Scholar 

  • Dias J, Leroux S, Tulich SN, Kiladis GN (2013) How systematic is organized tropical convection within the MJO? Geophys Res Lett 40:1420–1425

    Article  Google Scholar 

  • Frenkel Y, Majda AJ, Khouider B (2012) Using the stochastic multicloud model to improve tropical convective parameterization: a paradigm example. J Atmos Sci 69(3):1080–1105

    Article  Google Scholar 

  • Gardiner CW (1994) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, New York

    Google Scholar 

  • Gill A (1980) Some simple solutions for heat-induced tropical circulation. Quart J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Goswami BN, Ajayamohan RS, Xavier PK, Sengupta D (2003) Clustering of synoptic activity by Indian symmer monsoon intraseasonal oscillations. Geophys Res Lett 8:1–14. doi:10.1029/2002GL016734

    Google Scholar 

  • Grabowski WW, Moncrieff MW (2004) Moisture-convection feedback in the tropics. Quart J R Meteorol Soc 130:3081–3104

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1994) Organization of convection within the Madden–Julian oscillation. J Geophys Res 99:8073–8083

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of the Madden–Julian oscillation. J Atmos Sci 51(15):2225–2237

    Article  Google Scholar 

  • Holloway CE, Neelin JD (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66:1665–1683

    Article  Google Scholar 

  • Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver SJ (2013) Mjo and convectively coupled equatorial waves simulated by cmip5 climate models. J Clim 26:6185–6214

    Article  Google Scholar 

  • Izumo T, Masson S, Vialard J, de Boyer Montegut C, Behera SK, Madec G, Takahashi K, Yamagata T (2010) Low and high frequency Madden–Julian oscillations in austral summer: interannual variations. Clim Dyn 35:669–683

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Jones C, Carvalho LM, Higgins RW, Waliser DE, Schemm J-KE (2004) Climatology of tropical intraseasonal convective anomalies: 1979–2002. J Clim 17:523–539

    Article  Google Scholar 

  • Khouider B, Biello JA, Majda AJ (2010) A stochastic multicloud model for tropical convection. Commun Math Sci 8(1):187–216

    Article  Google Scholar 

  • Khouider B, Majda AJ (2006) A simple multicloud parametrization for convectively coupled tropical waves. Part I: linear analysis. J Atmos Sci 63:1308–1323

    Article  Google Scholar 

  • Khouider B, St-Cyr A, Majda AJ, Tribbia J (2011) The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J Atmos Sci 68(2):240–264

    Article  Google Scholar 

  • Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geophys Res Lett 31:L10101. doi:10.1029/2004GL019601

    Article  Google Scholar 

  • Kikuchi K, Wang B, Kajikawa Y (2011) Bimodal representation of the tropical intraseasonal oscillation. Clim Dyn. doi:10.1007/s00382-011-1159-1

  • Kiladis GN, Straub KH, HP T (2005) Zonal and vertical structure of the Madden–Julian oscillation. J Atmos Sci 62:2790–2809

    Article  Google Scholar 

  • Kiladis GN, Wheeler C, Haertel PT, Straub KH, Roundy PE (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003. doi:10.1029/2008RG000266

  • Kim DKS, Stern W, Waliser D, Kang I-S, Maloney E, Wang W, Weickmann K, Benedict J, Khairoutdinov M, Lee M-I, Neale R, Suarez M, Thayer-Calder K, Zhang G (2009) Application of MJO simulation diagnostics to climate models. J Clim 22:6413–6436

    Article  Google Scholar 

  • Lau K-M, Peng L (1990) Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: monsoon dynamics. J Atmos Sci 47:1443–1462

    Article  Google Scholar 

  • Lau WM, Waliser DE (2012) Intraseasonal variability in the atmosphere–ocean climate system. Springer, New York

  • Lawler GF (2006) Introduction to stochastic processes. CRC Press, Boca Raton

    Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Lawrence M (1999) Intraseasonal variability of the South Asian Monsoon. PhD thesis. 195 pp

  • Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy J-F, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part i: convective signals. J Clim 19(12):2665–2690

    Article  Google Scholar 

  • Madden RE, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RE, Julian PR (1994) Observations of the 40–50 day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Majda AJ, Biello JA (2004) A multiscale model for tropical intraseasonal oscillations. Proc Natl Acad Sci USA 101(14):4736–4741

    Article  Google Scholar 

  • Majda AJ, Franzke C, Khouider B (2008) An applied mathematics perspective on stochastic modelling for climate. Philos Trans R Soc A 366(1875):2427–2453

    Article  Google Scholar 

  • Majda AJ, Khouider B (2001) A numerical strategy for efficient modeling of the equatorial wave guide. Proc Natl Acad Sci USA 98(4):1341–1346

    Article  Google Scholar 

  • Majda AJ, Klein R (2003) Systematic multi-scale models for the tropics. J Atmos Sci 60:357–372

    Google Scholar 

  • Majda AJ, Stechmann SN (2009a) A simple dynamical model with features of convective momentum transport. J Atmos Sci 66(2):373–392

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2009b) The skeleton of tropical intraseasonal oscillations. Proc Natl Acad Sci USA 106(21):8417–8422

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2011) Nonlinear dynamics and regional variations in the MJO skeleton. J Atmos Sci 68(12):3053–3071

    Article  Google Scholar 

  • Majda AJ, Stechmann SN, Khouider B (2007) Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc Natl Acad Sci USA 104:9919–9924

    Article  Google Scholar 

  • Masunaga H (2007) Seasonality and Regionality of the Madden-Julian oscillation, Kelvin Wave, and equatorial Rossby Wave. J Atmos Sci 64:4400–4416

    Article  Google Scholar 

  • Matthews AJ (2008) Primary and successive events in the Madden–Julian Oscillation. Quart J R Meteorol Soc 134:439–453

    Article  Google Scholar 

  • Moncrieff M (2004) Analytic representation of the large-scale organization of tropical convection. Quart J R Meteorol Soc 130:1521–1538

    Google Scholar 

  • Moncrieff MW, Shapiro M, Slingo J, Molteni F (2007) Collaborative research at the intersection of weather and climate. WMO Bull 56:204–211

    Google Scholar 

  • Salby ML, Hendon HH (1994) Intraseasonal behavior of clouds, temperature, and winds in the tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665

    Article  Google Scholar 

  • Stechmann S, Majda AJ, Skjorshammer D (2013) Convectively coupled wave-environment interactions. Theor Comput Fluid Dyn 27:513–532

    Article  Google Scholar 

  • Stechmann SN, Neelin JD (2011) A stochastic model for the transition to strong convection. J Atmos Sci 68(12):2955–2970

    Article  Google Scholar 

  • Straub KH, Kiladis GN (2003) Interactions between the Boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon Weather Rev 131:945–960

    Article  Google Scholar 

  • Thual S, Majda AJ, Stechmann SN (2014) A stochastic skeleton model for the MJO. J Atmos Sci 71:697–715

    Article  Google Scholar 

  • Tian B, Waliser D, Fetzer E, Lambrigsten B, Yung Y, Wang B (2006) Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J Atmos Sci 63:2462–2485

    Article  Google Scholar 

  • Tung W-W, Giannakis D, Majda AJ (2014) Symmetric and antisymmetric convection signals in the Madden–Julian oscillation. Part I: basic modes in infrared brightness temperature. J Atmos Sci. doi:10.1175/JAS-D-13-0122.1

  • Wang B, Rui H (1990) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol Atmos Phys 44:43–61

    Article  Google Scholar 

  • Wang B, Xie X (1997) A model for the boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86

    Article  Google Scholar 

  • Webster PJ (1983) Mechanisms of monsoon low-frequency variability: surface hydrological effects. J Atmos Sci 40:2110–2124

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56(3):374–399

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate mjo index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Yoneyama K, Zhang C, Long CN (2013) Tracking pulses of the Madden–Julian oscillation. Bull Am Meteorol Soc 94:1871–1891

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang C, Dong M (2004) Seasonality in the Madden–Julian oscillation. J Clim 17:3169–3180

    Article  Google Scholar 

Download references

Acknowledgments

The research of A.J.M. is partially supported by the Office of Naval Research Grant ONR MURI N00014 -12-1-0912. The research of S.N.S. is partially supported by the Office of Naval Research Grants ONR YIP N00014-12-1-0744 and ONR MURI N00014-12-1-0912. S.T. is supported as a postdoctoral fellow through A.J.M’s ONR MURI Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulian Thual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thual, S., Majda, A.J. & Stechmann, S.N. Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle. Clim Dyn 45, 603–618 (2015). https://doi.org/10.1007/s00382-014-2256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2256-8

Keywords

Navigation