Skip to main content

Advertisement

Log in

Tropical Pacific response to continental ice sheet topography

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The last glacial maximum was marked by maximum land ice extent and lowest greenhouse gases concentration during the last ice age. We explore the impact of glacial continental ice sheet topography on the large-scale tropical ocean–atmosphere climate, in particular the tropical Pacific, in an intermediate complexity coupled model. Increasing the thickness of continental ice sheets causes a southward displaced Pacific Intertropical Convergence Zone (ITCZ) and a strengthening (weakening) of northern (southern) hemisphere winter Hadley cell. The equatorial zonal sea surface temperature gradient weakened with an increased continental ice sheets thickness, the reduction being caused by cooling in the western equatorial Pacific and warming in the eastern equatorial Pacific. The evolution of the tropical climate with changing ice thickness has distinct quasi-linear and nonlinear parts. While the linear part is a direct response to the ice topographic changes, the nonlinear part was a result of the tropical thermocline adjustment. Our analysis of a fully-coupled transient deglacial simulation strongly indicates the dominant role of ice sheet topography in determining the deglacial evolution of the simulated Pacific climate. The thickness of continental ice sheet, separate from ice albedo effect, has significant impact on the tropical ocean–atmosphere climate in particular with the meridional displacement in the Pacific ITCZ. The altered circulation states seen in the model may aid understanding of the relationship between tropical and high-latitude climate records in glacial-interglacial cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. As with popular convention, we will use ‘El Nino-like’ and ‘La Nina-like’ to indicate equatorial zonal SST gradient states that resembles the present-day analog. We make no assumptions here as to their underlying dynamics.

References

  • Andreasen DJ, Ravelo AC (1997) Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Paleoceanography 12(3):395–413

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the Itcz to northern hemisphere cooling. Geophys Res Lett 33:1

    Article  Google Scholar 

  • Chang P (1994) A study of the seasonal cycle of sea-surface temperature in the tropical Pacific-Ocean using reduced gravity models. J Geophys Res Oceans 99(C4):7725–7741

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25(5):477–496

    Article  Google Scholar 

  • Chiang JCH, Friedman AR (2012) Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu Rev Earth Planet Sci 40:383–412

    Article  Google Scholar 

  • Chiang JCH, Biasutti M, Battisti DS (2003) Sensitivity of the Atlantic intertropical convergence zone to last glacial maximum boundary conditions. Paleoceanography 18(4):1094. doi:10.1029/2003PA000916

  • Chiang JCH, Fang Y, Chang P (2008) Interhemispheric thermal gradient and tropical Pacific climate. Geophys Res Lett 35:L14704. doi:10.1029/2008GL034166

  • Chiang JCH, Fang Y, Chang P (2009) Pacific climate change and endo activity in the mid-holocene. J Clim 22(4):923–939

    Article  Google Scholar 

  • Climap (1981) Climap 18 k Database, NOAA Paleoclimatology

  • Crowley TJ (2000) Climap Ssts re-revisited. Clim Dyn 16(4):241–255

    Article  Google Scholar 

  • Cvijanovic I, Chiang JCH (2013) Global energy budget changes to high latitude north Atlantic cooling and the tropical Itcz response. Clim Dyn 40:1435–1452

    Article  Google Scholar 

  • Dahl K, Broccoli A, Stouffer R (2005) Assessing the role of north Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24(4):325–346

    Article  Google Scholar 

  • Dekens PS, Lea DW, Pak DK, Spero HJ (2002) Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem Geophy Geosys 3:1022. doi:10.1029/2001GC000200

  • Donohoe A, Marshall J, Ferreira D, Mcgee D (2013) The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J Clim 26:3597–3618

    Article  Google Scholar 

  • Herbert TD, Schuffert JD, Andreasen D, Heusser L, Lyle M, Mix A, Ravelo AC, Stott LD, Herguera JC (2001) Collapse of the California current during glacial maxima linked to climate change on land. Science 293(5527):71–76

    Article  Google Scholar 

  • Hewitt CD, Stouffer RJ, Broccoli AJ, Mitchell JFB, Valdes PJ (2003) The effect of ocean dynamics in a coupled Gcm Simulation of the last glacial maximum. Clim Dyn 20(2–3):203–218

    Google Scholar 

  • Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the Itcz to extratropical thermal forcing: idealized slab-ocean experiments with a Gcm. J Clim 21(14):3521–3532

    Article  Google Scholar 

  • Kang SM, Frierson DMW, Held IM (2009) The tropical response to extratropical thermal forcing in an idealized Gcm: the importance of radiative feedbacks and convective parameterization. J Atmos Sci 66(9):2812–2827

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The national center for atmospheric research community climate model: ccm3. J Clim 11(6):1131–1149

    Article  Google Scholar 

  • Kim JH, Schneider RR (2003) Low-latitude control of interhemispheric sea-surface temperature contrast in the tropical Atlantic over the past 21 Kyears: the possible role of se trade winds. Clim Dyn 21(3–4):337–347

    Article  Google Scholar 

  • Kim SJ, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, part 2: approach to equilibrium. Clim Dyn 20(6):635–661

    Google Scholar 

  • Koutavas A, Joanides S (2012) El Niño-Southern Oscillation Extrema in the Holocene and last glacial maximum. Paleoceanography 27:PA4208. doi:10.1029/2012PA002378

  • Koutavas A, Lynch-Stieglitz J (2003) Glacial-interglacial dynamics of the eastern equatorial pacific cold tongue-intertropical convergence zone system reconstructed from oxygen isotope records. Paleoceanography 18(4):131–1316

    Article  Google Scholar 

  • Koutavas A, Lynch-Stieglitz J, Marchitto TM, Sachs JP (2002) El Niño-like pattern in ice age tropical pacific sea surface temperature. Science 297(5579):226–230

    Article  Google Scholar 

  • Lea DW, Pak DK, Spero HJ (2000) Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science 289(5485):1719–1724

    Article  Google Scholar 

  • Lee SY, Poulsen CJ (2005) Tropical pacific climate response to obliquity forcing in the pleistocene. Paleoceanography 20:4

    Article  Google Scholar 

  • Lee SY, Poulsen CJ (2006) Sea ice control of plio-pleistocene tropical pacific climate evolution. Earth Planet Sci Lett 248(1–2):253–262

    Article  Google Scholar 

  • Leech PJ, Lynch-Stieglitz J, Zhang R (2013) Western pacific thermocline structure and the pacific marine intertropical convergence zone during the last glacial maximum. Earth Planet Sci Lett 363:133–143

    Article  Google Scholar 

  • Li C, Battisti DS (2008) Reduced Atlantic storminess during last glacial maximum: evidence from a coupled climate model. J Clim 21(14):3561–3579

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for bolling-allerod warming. Science 325(5938):310–314

    Article  Google Scholar 

  • Lunt DJ, Williamson MS, Valdes PJ, Lenton TM, Marsh R (2006) Comparing transient, accelerated, and equilibrium simulations of the last 30,000 years with the genie-1 model. Clim Past 2(2):221–235

    Article  Google Scholar 

  • Martinez I, Keigwin L, Barrows TT (2003) Yusuke yokoyama and john southon. La nina-like conditions in the eastern equatorial pacific and a stronger choco jet in the northern Andes during the last glaciation. Paleoceanography 18(2):111–181

    Article  Google Scholar 

  • Members, Climap Project (1976) Lgm climap sea surface temperature. Pangaea

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric Co2 concentrations over the last glacial termination. Science 291(5501):112–114

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110(7):699–706

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Shin SI, Liu ZY, Shields C (2003) Modeling El Nino and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:23

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5 g (Vm2) model and grace. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Peltier WR, Solheim LP (2004) The climate of the earth at last glacial maximum: statistical equilibrium state and a mode of internal variability. Quatern Sci Rev 23(3–4):335–357

    Article  Google Scholar 

  • Quadrelli R, Bretherton CS, Wallace JM (2005) On sampling errors in empirical orthogonal functions. J Clim 18(17):3704–3710

    Article  Google Scholar 

  • Roe GH, Lindzen RS (2001) A one-dimensional model for the interaction between continental-scale ice sheets and atmospheric stationary waves. Clim Dyn 17(5–6):479–487

    Article  Google Scholar 

  • Rosenthal Y, Oppo DW, Linsley BK (2003) The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea Western Equatorial Pacific. Geophys Res Lett 30:8

    Article  Google Scholar 

  • Russell JM, Vogel H, Konecky BL, Bijaksana S, Huang Y, Melles M, Wattrus N, Costa K, King JW (2014) Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. PNAS 111(14):5100–5105

  • Schmidt MW, Spero HJ (2011) Meridional shifts in the marine Itcz and the tropical hydrologic cycle over the last three glacial cycles. Paleoceanography 26:PA1206. doi:10.1029/2010PA001976

  • Schneider EK, Lindzen RS, Kirtman BP (1997) A tropical influence on global climate. J Atmos Sci 54(10):1349–1358

    Article  Google Scholar 

  • Shin SI, Liu Z, Otto-Bliesner B, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the last glacial maximum climate using the Ncar-Ccsm. Clim Dyn 20(2–3):127–151

    Google Scholar 

  • Stott L, Poulsen C, Lund S, Thunell R (2002) Super enso and global climate oscillations at millennial time scales. Science 297(5579):222–226

    Article  Google Scholar 

  • Stouffer RJ, Broccoli AJ, Delworth TL, Dixon KW, Gudgel R, Held I, Hemler R, Knutson T, Lee HC, Schwarzkopf MD, Soden B, Spelman MJ, Winton M, Zeng F (2006) Gfdl’s Cm2 global coupled climate models. Part IV: idealized climate response. J Clim 19(5):723–740

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie SP, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on enso. J Clim 20(19):4899–4919

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443

    Article  Google Scholar 

  • Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Climatol 45(9):1181–1189

    Article  Google Scholar 

  • Xie SP (1999) A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim 12(1):64–70

    Article  Google Scholar 

  • Yoshimori M, Broccoli AJ (2008) Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: global and zonal mean response. J Clim 21(17):4399–4423

    Article  Google Scholar 

  • Yoshimori M, Broccoli AJ (2009) On the link between Hadley circulation changes and radiative feedback processes. Geophys Res Lett 36:L20703. doi:10.1029/2009GL040488

  • Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) Enso at 6 and 21 ka from ocean–atmosphere coupled model simulations. Clim Dyn 30(7–8):745–762

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate useful discussions with Camille Li. This research was supported by National Science Foundation Grant OCE‐0902774 to J. C. H. Chiang and P. Chang and Ministry of Science and Technology Grant 100-2116-M-001 to S.Y. Lee. TraCE-21 k is supported by P2C2 program/NSF, Abrupt Change Program/DOE, EaSM program/DOE, INCITE computing program/DOE and NCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Chiang, J.C.H. & Chang, P. Tropical Pacific response to continental ice sheet topography. Clim Dyn 44, 2429–2446 (2015). https://doi.org/10.1007/s00382-014-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2162-0

Keywords

Navigation