Skip to main content
Log in

Hydro-climatic forecasting using sea surface temperatures: methodology and application for the southeast US

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sea surface temperatures (SSTs) are often used for the development of hydro-climatic variable forecasts based on teleconnection methods. Such methods rely on projections or linear combinations of teleconnection indices [e.g. El Niño-Southern Oscillation (ENSO)] and other predictor fields. This study introduces a new hydro-climatic forecasting method identifying SST “dipole” predictors motivated by major teleconnection patterns. An SST dipole is defined as a function of average SST anomalies over two oceanic areas of specific sizes and geographic locations. An optimization algorithm is developed to search for the most significant SST dipole predictors of an external hydro-climatic series based on the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate multiple forecast values. The new method is applied to the forecasting of seasonal precipitation over the southeast US. Hindcasting results show that significant dipoles related to ENSO as well as other prominent patterns at different lead times can indeed be identified. The dipole method also compares favorably with existing statistical forecasting schemes with respect to multiple skill measures. Furthermore, an operational forecasting framework able to produce ensemble forecast traces and uncertainty intervals that can support regional water resources planning and management is also developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adams RM, Bryant KJ, Mccarl BA, Legler DM, O’Brien J, Solow A, Weiher R (1995) Value of improved long-range weather information. Contemp Econ Policy 13(3):10–19

    Article  Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Anderson J, van den Dool H, Barnston A, Chen W, Stern W, Ploshay J (1999) Present-day capabilities of numerical and statistical models for atmospheric extratropical seasonal simulation and prediction. Bull Am Meteorol Soc 80:1349–1361

    Article  Google Scholar 

  • Barnett TP, Preisendorfer R (1987) Origins and levels of monthly and seasonal forecast skill for United States surface air temperature determined by canonical correlation analysis. Mon Weather Rev 115:1825–1850

    Article  Google Scholar 

  • Barnston AG (1994) Linear statistical short-term climate predictive skill in the Northern Hemisphere. J Clim 7:1513–1564

    Article  Google Scholar 

  • Barnston AG, He YX (1996) Skill of canonical correlation analysis forecasts of 3-month mean surface climate in Hawaii and Alaska. J Clim 9:2579–2605

    Article  Google Scholar 

  • Barnston AG, Ropelewski CF (1992) Prediction of ENSO episodes using canonical correlation analysis. J Clim 5:1316–1345

    Article  Google Scholar 

  • Barnston AG, Li S, Mason SJ, Dewitt DG, Goddard L, Gong X (2010) Verification of the first 11 years of IRI’s seasonal climate forecasts. J Appl Meteorol 49:493–520

    Article  Google Scholar 

  • Bengtsson L, Schlese U, Roeckner E, Latif M, Barnett TP, Graham N (1993) A two-tiered approach to long-range climate forecasting. Science 261:1026–1029

    Article  Google Scholar 

  • Camberlin P, Philippon N (2002) The East African March–May rainy season: associated atmospheric dynamics and predictability over the 1968–97 period. J Clim 15:1002–1019

    Article  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs ENSO. Int J Climatol 21:973–1005

    Article  Google Scholar 

  • Campana P, Knox J, Grundstein A, Dowd J (2012) The 2007–2009 drought in Athens, Georgia, United States: a climatological analysis and an assessment of future water availability. J Am Water Resour As 48(2):379–390. doi:10.1111/j.1752-1688.2011.00619.x

    Article  Google Scholar 

  • Colman A, Davey M (1999) Prediction of summer temperature, rainfall and pressure in Europe preceding winter North Atlantic Ocean temperature. Int J Climatol 19:513–536

    Article  Google Scholar 

  • Diro G, Grimes D, Black E (2010a) Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I. Observation and modelling. Clim Dyn. doi:10.1007/s00382-010-0837-8

  • Diro G, Grimes D, Black E (2010b) Teleconnections between Ethiopian summer rainfall and sea surface temperature: part II. Seasonal forecasting. Clim Dyn. doi:10.1007/s00382-010-0896-x

    Google Scholar 

  • Drosdowsky W, Chambers LE (2000) Note and correspondence: near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J Clim 14:1677–1687

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall/CRC, New York

    Book  Google Scholar 

  • Elsner JB, Schmertmann CP (1994) Assessing forecast skill through cross validation. Weather Forecast 9:619–624

    Article  Google Scholar 

  • Folland CK, Owen JA, Ward MN, Colman AW (1991) Prediction of seasonal rainfall in the Sahel region of Africa using empirical and dynamical methods. J Forecast 10:2–56

    Article  Google Scholar 

  • Frankignoul C (1985) Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev Geophys 23(4):357–390

    Article  Google Scholar 

  • Gandin LS, Murphy AH (1992) Equitable skill scores for categorical forecasts. Mon Weather Rev 120:361–370

    Article  Google Scholar 

  • Georgakakos KP, Georgakakos AP, Graham NE (1998) Assessment of benefit of climate forecasts of reservoir management in the GCIP region. GEWEX News 8(3):5–7

    Google Scholar 

  • Georgakakos KP, Graham NE, Cheng F-Y, Spencer C, Shamir E, Georgakakos AP, Yao H, Kistenmacher M (2012a) Value of adaptive water resources management in Northern California under climatic variability and change: dynamic hydroclimatology. J Hydrol. doi:10.1016/j.jhydrol.2011.04.032

  • Georgakakos AP, Yao H, Kistenmacher M, Georgakakos KP, Graham NE, Cheng F-Y, Spencer C, Shamir E (2012b) Value of adaptive water resources management in Northern California under climatic variability and change: reservoir management. J Hydrol. doi:10.1016/j.jhydrol.2011.04.038

  • Gerrity JP (1992) Notes and correspondence: a note on Gandin and Murphy’s equitable skill score. Mon Weather Rev 120:2709–2712

    Article  Google Scholar 

  • Gershunov A, Cayan DR (2003) Heavy daily precipitation frequency over the contiguous United States: source of climatic variability and seasonal predictability. J Clim 16:2752–2765

    Article  Google Scholar 

  • Glantz MH (2001) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge University Press, London

    Google Scholar 

  • Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152

    Article  Google Scholar 

  • Gray WM (1984) Atlantic seasonal hurricane frequency. Part II: forecasting its variability. Mon Weather Rev 112:1669–1683

    Article  Google Scholar 

  • Gray WM, Landsea CW, Mielke PW Jr, Berry KJ (1992) Predicting Atlantic seasonal hurricane activity 6–11 months in advance. Weather Forecast 7:440–455

    Article  Google Scholar 

  • Gray WM, Landsea CW, Mielke PW Jr, Berry KJ (1994) Predicting Atlantic seasonal tropical cyclone activity by 1 June. Weather Forecast 9:103–115

    Article  Google Scholar 

  • Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41

    Article  Google Scholar 

  • Hastenrath S (1995) Recent advances in tropical climate prediction. J Clim 8:1519–1532

    Article  Google Scholar 

  • Hastenrath S, Polzin D, Camberlin P (2004) Exploring the predictability of the ‘short rains’ at the coast of East Africa. Int J Climatol 24:1333–1343

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Johansson A, Barnston AG, Saha S, van den Dool HM (1998) On the level of forecast skill in northern Europe. J Atmos Sci 55:103–127

    Article  Google Scholar 

  • Johnson MA, O’Brien JJ (1990) The northeast Pacific Ocean response to the 1982–1983 El Niño. J Geophys Res 95:7155–7166

    Article  Google Scholar 

  • Jones JW, Hansen JW, Royce FS, Messina CD (2000) Potential benefits of climate forecasting to agriculture. Agric Ecosyst Environ 82:169–184

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Kumar A, Juang H-MH, Schemm J-K, Wang W, Yang F, Hong S-Y, Peng P, Chen W, Moorthi S, Ji M (2002) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83:1019–1037

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analysis of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Klotzbach PJ (2008) Refinements to Atlantic basin seasonal hurricane prediction from 1 December. J Geophys Res 113:D17109. doi:10.1029/2008JD010047

    Article  Google Scholar 

  • Klotzbach PJ, Gray WM (2004) Updated 6–11-month prediction of Atlantic basin seasonal hurricane activity. Weather Forecast 19:917–934

    Article  Google Scholar 

  • Kumar A, Barnston A, Peng P, Hoerling MP, Goddard L (2000) Changes in the spread of the variability of the seasonal mean atmospheric states associated with ENSO. J Clim 13:3139–3151

    Article  Google Scholar 

  • Kung EC, Sharif TA (1980) Regression forecasting of the onset of the Indian summer monsoon with antecedent upper air conditions. J Appl Meteorol 19:370–380

    Article  Google Scholar 

  • Kurtzman D, Scanlon BR (2007) El Niño–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: evaluation of spatial distribution and predictions. Water Resour Res 43:W10427. doi:10.1029/2007WR005863

    Article  Google Scholar 

  • Landman WA, Mason SJ (1999) Operational prediction of South African rainfall using canonical correlation analysis. Int J Climatol 19:1073–1090

    Article  Google Scholar 

  • Lau N-C, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Lavers D, Luo L, Wood EF (2009) A multiple model assessment of seasonal climate forecast skill for applications. Geophys Res Lett 36:L23711. doi:10.1029/2009GL041365

    Article  Google Scholar 

  • Lo F, Wheeler MC, Meinke H, Donald A (2007) Probabilistic forecasts of the onset of the north Australian wet season. Mon Weather Rev 135:3506–3520

    Article  Google Scholar 

  • Markowski GR, North GR (2003) Climatic influence of sea surface temperature: evidence of substantial precipitation correlation and predictability. J Hydrometeorol 4:856–877

    Article  Google Scholar 

  • Maxwell JT, Soulé PT (2009) United States drought of 2007: historical perspectives. Clim Res 38:95–104. doi:10.3354/cr00772

    Article  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26:1589–1600

    Article  Google Scholar 

  • Mjelde JW, Hill HSJ, Griffiths JF (1998) A review of current evidence on climate forecasts and their economic effects in agriculture. Am J Agr Econ 80(5):1089–1095

    Article  Google Scholar 

  • Mo K, Schemm JE (2008) Relationships between ENSO and drought over the southeastern United States. Geophys Res Lett 35:L15701. doi:10.1029/2008GL034656

    Article  Google Scholar 

  • Mutai CC, Ward MN, Colman AW (1998) Towards the prediction of the East Africa short rains based on sea-surface temperature—atmosphere coupling. Int J Climatol 18:975–997

    Article  Google Scholar 

  • Neter J, Kutner M, Nachtsheim C, Wasserman W (1996) Applied linear statistical models. McGraw-Hill/Irwin, New York

    Google Scholar 

  • Nicholls N (1979) A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon Weather Rev 107:1221–1224

    Article  Google Scholar 

  • Nicholls N (1984) A system for predicting the onset of the north Australian wet-season. J Climatol 4:425–435

    Article  Google Scholar 

  • Palmer TN et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004

    Article  Google Scholar 

  • Philippon N, Camberlin P, Fauchereau N (2002) Empirical predictability study of October-December East African rainfall. Q J R Meteorol Soc 128:2239–2256

    Article  Google Scholar 

  • Rajeevan M, Pai DS, Kumar RA, Lai B (2007) New statistical models for long-range forecasting of southwest monsoon rainfall over India. Clim Dyn. doi:10.1007/s00382-006-0197-6

    Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Seager R, Tzanova A, Nakamura J (2009) Drought in the southeastern United States: causes, variability over the last millennium, and the potential for future hydroclimate change. J Clim 22:5021–5045

    Article  Google Scholar 

  • Sharma A (2000) Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1—a strategy for system predictor identification. J Hydrol 239:232–239

    Article  Google Scholar 

  • Sharma A, Luk KC, Cordery I, Lall U (2000) Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 2—predictor identification of quarterly rainfall using ocean-atmosphere information. J Hydrol 239:240–248

    Article  Google Scholar 

  • Shepherd M, Mote T, Dowd J, Roden M, Knox P, McCutcheon SC, Nelson SE (2011) An overview of synoptic and mesoscale factors contributing to the disastrous Atlanta flood of 2009. Bull Am Meteorol Soc 92:861–870

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392:370–373

    Article  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B36:111–147

    Google Scholar 

  • Thomson MC et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Uvo CB, Repelli CA, Zebiak SE, Kushnir Y (1998) The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J Clim 11:551–562

    Article  Google Scholar 

  • van den Dool H (2007) Empirical methods in short-term climate prediction. Oxford University Press, Oxford

    Google Scholar 

  • van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DT (2005) Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year period. J Clim 18:3250–3269

    Article  Google Scholar 

  • Wang H, Fu R, Kumar A, Li W (2010) Intensification of summer rainfall variability in the southeastern United States during recent decades. J Hydrometeorol 11:1007–1018

    Article  Google Scholar 

  • Ward NM (1998) Diagnosis and short-lead prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J Clim 12:3167–3191

    Article  Google Scholar 

  • Westra S, Sharma A (2010) An upper limit to seasonal rainfall predictability? J Clim 23:3332–3351

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, New York

    Google Scholar 

  • Wilks DS (2008) Improved statistical seasonal forecasts using extended training data. Int J Climatol 28:1589–1598

    Article  Google Scholar 

  • Yu ZP, Chu PS, Schroeder T (1997) Predictive skills of seasonal to annual rainfall variations in the US affiliated Pacific Islands: canonical correlation analysis and multivariate principal components regression approaches. J Clim 10:2586–2599

    Article  Google Scholar 

  • Zwiers FW, von Storch H (2004) On the role of statistics in climate research. Int J Climatol 24:665–680

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Georgia Water Resources Institute. The authors also acknowledge the anonymous reviewers for their comments on (1) the cross validation of the dipole significance and associated forecasts and (2) physical explanation of the identified dipoles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris P. Georgakakos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CJ., Georgakakos, A.P. Hydro-climatic forecasting using sea surface temperatures: methodology and application for the southeast US. Clim Dyn 42, 2955–2982 (2014). https://doi.org/10.1007/s00382-013-1908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1908-4

Keywords

Navigation