Skip to main content
Log in

Pacific interdecadal variability driven by tropical–extratropical interactions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the infulence of ENSO teleconnections on air-sea interactions over the global oceans. J Climate 15:2205–2231

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Latif M, Dommenget D, Saravanan R (1999) Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys Res Lett 26(5):615–618

    Article  Google Scholar 

  • Farneti R, Vallis GK (2013) Meridional energy transport in the coupled atmosphere-ocean system: variability and compensation. J Climate. doi:10.1175/JCLI-D-12-00133.1

    Google Scholar 

  • Griffies S, Biastoch A, Boning C, Bryan F, Danabasoglu G, Chassignet E, England M, Gerdes R, Haak H, Hallberg R (2009). Coordinated ocean-ice reference experiments (COREs). Ocean Model 26(1–2):1–46

    Article  Google Scholar 

  • Griffies SM (2007) Elements of MOM4p1. Technical report GFDL Ocean Group No. 6, NOAA/Geophysical Fluid Dynamics Laboratory

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the Tropics and the extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Seager R, Molteni F (2005) Tropical Pacific-driven decadal energy transport variability. J Climate 18:2037–2051

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26(12):1743–1746

    Google Scholar 

  • Klinger BA, Haine TWH (2013) Ocean circulation in three dimensions. Cambridge University Press, Cambridge (in preparation)

  • Klinger BA, Marotzke J (2000) Meridional heat transport by the subtropical cell. J Phys Oceanogr 30:696–705

    Article  Google Scholar 

  • Klinger BA, McCreary JP, Kleeman R (2002) The relationship between oscillating subtropical wind stress and equatorial temperature. J Phys Oceanogr 32:1507–1521

    Article  Google Scholar 

  • Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2013) On the need of intermediate complexity general circulation models: a SPEEDY example. Bull Am Meteor Soc 94:25–30

    Article  Google Scholar 

  • Large W, Yeager S (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical note: NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research

  • Latif M, Barnett TP (1996) Causes of decadal climate variability over the North Pacific and North America: dynamics and predictability. J Climate 9:2407–2423

    Article  Google Scholar 

  • Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. doi:10.1029/2005RG000172

  • Lohmann K, Latif M (2005) Tropical Pacific decadal variability and the subtropical-tropical cells. J Climate 18:5163–5178

    Article  Google Scholar 

  • Lu P, McCreary JP (1995) Influence of the ITCZ on the flow of the thermocline water from the subtropical to the equatorial Pacific Ocean. J Phys Oceanogr 25:3076–3088

    Article  Google Scholar 

  • Mantua NJ, HAre SR, Zhang Y, Wallace JM, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • McCreary JP, Anderson DLT (1991) An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation. J Geophys Res 96:3125–3150

    Article  Google Scholar 

  • McCreary JP, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497

    Google Scholar 

  • McPhaden MJ, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415:603–608

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2004) Pacific ocean circulation rebounds. Geophys Res Lett 31(L18301). doi:10.1029/2004GL020727

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments. Climate Dyn 20:175–191

    Google Scholar 

  • Molteni F, King MP, Kucharski F, Straus DM (2011) Planetary-scale variability in the northern winter and the impact of land-sea thermal contrast. Climate Dyn 37(1–2):151–170

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857

    Article  Google Scholar 

  • Nonaka M, Xie S-P, McCreary JP (2002) Decadal variations on the subtropical cells and equatorial Pacific SST. Geophys Res Lett 29(7). doi:10.1029/2001GL013717

  • Nonaka M, Xie S-P, Takeuchi K (2000) Equatorward spreading of a passive tracer with application to the North Pacific interdecadal temperature variations. J Oceanogr 56:173–183

    Article  Google Scholar 

  • Pedlosky J (1987) An inertial theory of the equatorial undercurrent. J Phys Oceanogr 17:1978–1985

    Article  Google Scholar 

  • Pedlosky J (1988) Entraiment and the termination of the equatorial undercurrent. J Phys Oceanogr 18:880–886

    Article  Google Scholar 

  • Pedlosky J (1996) Ocean circulation theory. Springer, Berlin

    Book  Google Scholar 

  • Pierce D, Barnett TP, Latif M (2000) Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J Climate 13:1173–1194

    Article  Google Scholar 

  • Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Climate 19:4755–4771

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Climate 17:3761–3774

    Article  Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Climate 18:4355–4373

    Article  Google Scholar 

  • Schneider NS, Miller AJ, Alexander MA, Deser C (1999) Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J Phys Oceanogr 29:1056–1070

    Article  Google Scholar 

  • Solomon A, McCreary JP, Kleeman R, Klinger BA (2003) Interannual and decadal variability in an intermediate coupled model of the Pacific region. J Climate 16:383–405

    Article  Google Scholar 

  • Steele M, Morfley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Climate 14:2079–2087

    Article  Google Scholar 

  • Suarez M, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Timmermann A, Jin F-F (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett 29. doi:10.1029/2001GL013369

  • Trenberth K, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Climate 14:3433–3443

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2003) Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J Climate 16:3691–3705

    Article  Google Scholar 

  • Vallis GK, Farneti R (2009) Meridional energy transport in the coupled atmosphere-ocean system: scaling and numerical experiments. Quart J R Meteor Soc 135(644):1643–1660

    Article  Google Scholar 

  • Wallace JM, Zhang Y, Bajuk L (1996) Interpretation of interdecadal climate trends in Northern Hemisphere surface air temperature. J Climate 9:249–259

    Article  Google Scholar 

  • Wang H, Kumar A, Wang W, Xue Y (2013) Influence of ENSO on Pacific decadal variability: an analysis based on the NCEP climate forecast system. J Climate (in press)

  • Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Tech 17:525–531

    Article  Google Scholar 

  • Yeh S-W, Kirtman BP (2009) Internal atmospheric variability and interannual-to-decadal ENSO variability in a CGCM. J Climate 22:2335–2355

    Article  Google Scholar 

  • Zhang DM, McPhaden J (2006) Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models. Ocean Model 15(3–4):250–273

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Climate 10(5):1004–1020

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jay McCreary and two anonymous reviewers for their insightful criticism, comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Farneti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farneti, R., Molteni, F. & Kucharski, F. Pacific interdecadal variability driven by tropical–extratropical interactions. Clim Dyn 42, 3337–3355 (2014). https://doi.org/10.1007/s00382-013-1906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1906-6

Keywords

Navigation