Skip to main content

Advertisement

Log in

Uncertainty in modeled upper ocean heat content change

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM’s heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bastos L, O’Hagan A (2009) Diagnostics for gaussian process emulators. Technometrics 51(4):425–438. doi:10.1198/TECH.2009.08019

    Article  Google Scholar 

  • Bayarri MJ, Berger JO, Paulo R, Sacks J, Cafeo JA, Cavendish J, Lin CH, Tu J (2007) A framework for validation of computer models. Technometrics 49:138–154. doi:10.1198/004017007000000092

    Article  Google Scholar 

  • Bitz CM, Lipscomb WH (1999) An energy-conserving thermodynamic model of sea ice. J Geophys Res 104:15669–15677

    Article  Google Scholar 

  • Briegleb BP, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2002) Description of the community climate system model version 2 sea ice model. National Center for Atmospheric Research. http://www.ccsm.ucar.edu/models/ice-csim4

  • Brierley CM, Collins M, Thorpe AJ (2010) The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Clim Dyn 34(2–3):325–343. doi:10.1007/s00,382-008-0486-3

    Article  Google Scholar 

  • Bryan K (1969a) Climate and the ocean circulation III: the ocean model. Mon Weather Rev 97:806–824

    Article  Google Scholar 

  • Bryan K (1969b) A numerical method for the study of the circulation of the world ocean. J Comput Phys 4:347–376

    Article  Google Scholar 

  • Cai W, Cowan T, Arblaster JM, Wijffels S (2010) On potential causes for an under-estimated global ocean heat content trend in cmip3 models. Geophys Res Lett 37. doi:10.1029/2010GL044399

  • Challenor P (2011) Designing a computer experiment that involves switches. J Stat Theor Pract 5(1):47–57

    Article  Google Scholar 

  • Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J, Chang P, Doney S, Hack J, Henderson T, Kiehl J, Large W, McKenna D, Santer B, Smith R (2006) The community climate system model: Ccsm3. J Clim 19:2122–2143. doi:10.1029GL021592

    Article  Google Scholar 

  • Domingues CM, Church J, White N, Gleckler P, Wijffels S, Barker P, Dunn J (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 435:1090–1093. doi:10.1038/nature07080

    Article  Google Scholar 

  • Edwards N, Cameron D, Rougier J (2011) Precalibrating an intermediate complexity climate model. Clim Dyn 37:1469–1482. doi10.1007/s00382-010-0921-0,

    Google Scholar 

  • Furrer R, Knutti R, Sain SR, Nychka DW, Meehl GA (2007) Spatial patterns of probabilistic temperature change projections from a multivariate bayesian analysis. Geophys Res Lett 34. doi:10.1029/2006GL027,754

  • Gent P, McWilliams J (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gordon L, Jones L (1973) The effect of temperature on carbon dioxide partial pressures in seawater. Mar Chem 1(4):317–322

    Article  Google Scholar 

  • Hall JW, Manning LJ, Hankin RKS (2011) Bayesian calibration of a flood inundation model using spatial data. Water Resourc Res 47:14. doi:10.1029/2009WR008,541

    Article  Google Scholar 

  • Hansen J, Russell G, Lacis A, Fung I, Rind D, Stone P (1985) Climate response times: dependence on climate sensitivity and ocean mixing. Science 229:857–859

    Article  Google Scholar 

  • Higdon D, Kennedy M, Cavendish J, Cafeo J, Ryne R (2004) Combining field observations and simulations for calibration and prediction. SIAM J Sci Comput 26:448–466

    Article  Google Scholar 

  • Huang B, Stone PH, Hill C (2002) Sensitivities of deep-ocean heat uptake and heat content to surface fluxes and subgridscale parameters in an ocean general circulation model with idealized geometry. J Geophys Res 108:3015. doi:10.1029/2001JC001,218

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying xbt and mbt depth bias corrections. J Oceanogr 65:287–299

    Article  Google Scholar 

  • Kennedy M, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc B 63:425–464

    Article  Google Scholar 

  • Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler P, Hewitson B, Mearns L (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections

  • Large W, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Large W, McWilliams J, Doney S (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary mixing parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Lefévre N, Taylor A (2002) Estimating pco2 from sea surface temperatures in the atlantic gyres. Deep Sea Res Part I Oceanogr Res Paper 49(3):539–554. doi:10.1016/S0967-0637(01)00,064-4

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. GRL 36. doi:10.1029/2008GL037155

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World ocean atlas 2005, vol 1: Temperature. Tech. rep., NOAA Atlas NESDIS 61, S. Levitus, Ed

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245. http://www.jstor.org/stable/1268522

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The wcrp cmip3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change 1:360–364. doi:10.1038/nclimate1229

    Article  Google Scholar 

  • Oakley J, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a bayesian approach. J R Statist Soc B 66(3):751–769

    Article  Google Scholar 

  • O’Hagan A, Buck CE, Daneshkhah A, Eiser JR, Garthwaite PH, Jenkinson DJ, Oakley JE, Rakow T (2006) Uncertain judgements: eliciting experts’ probabilities. ISBN 9780470029992, Wiley

  • Palmer M, Antonov J, Barker P, Bindoff N, Boyer T, Carson M, Domingues C, Gille S, Gleckler P, Good S, Gouretski V, Guinehut S, Haines K, Harrison DE, Ishii M, Johnson G, Levitus S, Lozier S, Lyman J, Meijers A, von Schuckmann K, Smith D, Wijffels S, Willis J (2010) Future observations for monitoring global ocean heat content, vol 2, ESA Publication WPP-306

  • Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge, MA

    Google Scholar 

  • Rougier J, Sexton DMH, Murphy JM, Stainforth D (2009) Analyzing the climate sensitivity of the hadsm3 climate model using ensembles from different but related experiments. J Clim 22:3540–3557

    Article  Google Scholar 

  • Sansó B, Forest C (2009) Statistical calibration of climate system properties. J R Stat Soc 58(4):485–503. http://www3.interscience.wiley.com/journal/122445461/abstract

    Google Scholar 

  • Sansó B, Forest C, Zantedeschi D (2008) Inferring climate system properties using a computer model. Bayesian Anal 3(1):1–38. http://ba.stat.cmu.edu/journal/2008/vol03/issue01/sanso.pdf

    Google Scholar 

  • Smith RD, Gent PR (2002) Reference manual for the parallel ocean program (pop), ocean component of the community climate system model (ccsm2.0 and 3.0)

  • Sobol I (1967) Distribution of points in a cube and approximate evaluation of integrals. USSR Comput Maths Math Phys 7:86–112

    Article  Google Scholar 

  • Sun S, Hansen J (2003) Climate simulations for 1951–2050 with a coupled atmosphere-ocean model. J Clim 16:2807–2826. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Tokmakian R, Challenor P, Andrianakis I (2012) An extreme non-linear example of the use of emulators with simulators using the stommel model. J Atmos Oceanic Tech 29:1704–1715

    Article  Google Scholar 

  • Vernon I, Goldstein M, Bower RG (2010) Galaxy formation: a bayesian uncertainty analysis. Bayesian Anal 05(04):619–670

    Article  Google Scholar 

  • Völker C, Wallace WR, Wolf-Gladrow DA (2003) On the role of heat fluxes in the uptake of anthropogenic carbon in the north atlantic. Global Biogeochem Cycles 16(4):1138. doi:10.1029/2002GB001897

    Google Scholar 

  • Wigley TML, Schlesinger ME (1985) Analytical solution for the effect of increasing co2 on global mean temperature. Nature 315:649–652

    Article  Google Scholar 

  • Williams B, Higdon D, Gattiker J, Moore L, McKay M, Keller-McNulty S (2006) Combining experimental data and computer simulations, with an application to flyer plate experiments. J Bayesian Anal 4:765–692

    Article  Google Scholar 

  • Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution ccsm3. J Clim 19:2545–2566

    Article  Google Scholar 

Download references

Acknowledgments

This work was completed with funding under NSF Grant No. 0851065. We also thank the Isaac Newton Institute of Mathematical Sciences at the University of Cambridge for allowing us to spend time at the institute where some of this research was completed. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We thank the anonymous reviewers for their comments which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Tokmakian.

Appendix

Appendix

Symbol

Units

Definition

\(\beta\)

 

Regression parameters (vector)

\(\Upgamma(\cdot)\)

 

Gamma function

ρ0

kg/m3

Density

σ 2 obs

 

Variance related to observations

σ 2 cmip

 

Variance related to cmip models

σ 2 disc

 

Discrepancy

σ2

 

Variance prior

σ2*

 

Variance posterior

σ structural

 

Structural standard deviation

σ parameter

 

Parameter standard deviation

τ

Month

Model month

ν

 

Matern covariance shape parameter—set to 3/2

\(\chi(\cdot,\cdot)\)

 

Correlation function

A

 

n x n covariance matrix between D locations

B

 

Smoothing parameters (matrix)

b

 

Components of B

c p

J/(kgoK)

Specific heat

D

 

Matrix of all locations × (design points) (n × q)

D MD

 

Mahalanobis distance

dz

m

Model layer depth

dx

m

Zonal width of model grid cell

dy

m

Meridional width of model grid cell

\(f(\cdot)\)

 

Emulator function

\(F(\cdot)\)

 

Simulator function

\(G(\cdot)\)

 

Gaussian

H

 

Matrix of regression functions (h) at D

\({\bf h}(\cdot)\)

 

Regression function

I *2 mp

 

Implausibility score for cmip comparisons

I 2 mp

 

Implausibility score

\(K_\nu(\cdot)\)

 

Modified Bessel function

\(m_o(\cdot)\)

 

Prior mean process function

\(m^*(\cdot)\)

 

Posterior mean process function

N cmip

 

Number of CMIP simulations

n

 

Number of simulator runs at D locations

\({\Updelta Q}\)

J

Yearly heat content change

\( \overline{\Updelta Q}\)

J/yr

Mean of \({\Updelta Q}\)

q

 

Length of input vector—the number of process parameters

T

oK

Temperature of model layer

t

 

Vector of covariances between a new point and \(D' (\hbox{n} \times 1){\bf v}_{\bf o}(\cdot,\cdot)\) a

\({\bf v}^{*}(\cdot,\cdot)\)

 

Posterior covariance

x

 

Generic input parameter vector, length q

x val

 

Input parameter vector associated with validation location

Y

 

Generic simulator outcome

Y

 

Ensemble of simulator outcomes (vector)

Y val

 

Simulator outcome for validation

Y obs

 

Outcome related to observations

Y chip

 

Outcome related to cmip models

Y emul

 

Simulator outcome to use to create emulator

  1. aPrior covariance
  2. Scalar: roman; Vector, Matrix: bold roman
  3. Bold indicates a vector of these values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokmakian, R., Challenor, P. Uncertainty in modeled upper ocean heat content change. Clim Dyn 42, 823–842 (2014). https://doi.org/10.1007/s00382-013-1709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1709-9

Keywords

Navigation