Skip to main content

Advertisement

Log in

Atmospheric blocking and its relation to jet changes in a future climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The future changes of atmospheric blocking over the Euro-Atlantic sector, diagnosed from an ensemble of 17 global-climate simulations obtained with the ECHAM5/MPI-OM model, are shown to be largely explainable from the change of the 500 hPa mean zonal circulation and its variance. The reduction of the blocking frequency over the Atlantic and the increased frequency of easterly upper-level flow poleward of 60°N are well explained by the changes of mean zonal circulation. In winter and autumn an additional downstream shift of the frequency maximum is simulated. This is also seen in a subset of the CMIP5 models with RCP8.5. To explain this downstream shift requires the inclusion of the changing variance. It is suggested that the increased downstream variance is caused by the stronger, more eastward extending future jet, which promotes Rossby wave breaking and blocking to occur further downstream. The same relation between jet-strength and central-blocking longitude is found in the variability of the current climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Note that these criteria are the same as in Tibaldi and Molteni (1990), but transformed to the variable UG500.

References

  • Altenhoff AM, Martius O, Croci-Maspoli M, Schwierz C, Davies HC (2008) Linkage of atmospheric blocks and synoptic-scale Rossby waves: a climatological analysis. Tellus A60:1053–1063

    Google Scholar 

  • Barnes EA, Hartmann DL (2010) Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys Res Lett 37:L23802. doi:10.1029/2010GL045700

    Google Scholar 

  • Barnes EA, Slingo J, Woollings T (2012) A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Clim Dyn 38:2467–2481. doi:10.1007/s00382-011-1243-6

    Article  Google Scholar 

  • Barriopedro D, Garcia-Herrera R, Lupo AR, Hernandez E (2006) A climatology of northern hemisphere blocking. J Clim 19:1042–1063

    Article  Google Scholar 

  • Barriopedro D, Garcia-Herrera R, Trigo RM (2010a) Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme. Clim Dyn 35:1373–1391. doi:10.1007/s00382-010-0767-5

    Article  Google Scholar 

  • Barriopedro D, Garcia-Herrera R, Trigo RM (2010b) Application of blocking diagnosis methods to general circulation models. Part II: model simulations. Clim Dyn 35:1393–1409. doi:10.1007/s00382-010-0766-6

    Article  Google Scholar 

  • Buehler T, Raible CC, Stocker TF (2011) The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus 63(2):212–222. doi:10.1111/j.1600-0870.2010.00492.x

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:L20704. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • de Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:L04706. doi:10.1029/2011GL050665

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Illari L (1984) A diagnostic study of the potential vorticity in a warm blocking anticyclone. J Atmos Sci 41:3518–3525

    Article  Google Scholar 

  • Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K, Thomson A, Velders G, van Vuuren D (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Google Scholar 

  • Pelly JL, Hoskins BJ (2003) A new perspective on blocking. J Atmos Sci 60:743–755

    Article  Google Scholar 

  • Rex DF (1951) The effect of Atlantic blocking action upon European climate. Tellus 3:1–16. doi:10.1111/j.2153-3490.1951.tb00784.x

    Article  Google Scholar 

  • Rex DR (1950) Blocking action in the middle troposphere and its effect upon regional climate. Tellus 2:169–211

    Google Scholar 

  • Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. J Clim 23:6143–6152. doi:10.1175/2010JCLI3728.1

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi:10.1029/2011GL049573

    Article  Google Scholar 

  • Shutts GJ (1983) The propagation of eddies in diffluent jetstreams: eddy vorticity forcing of ‘blocking’ flow fields. Quart J R Meteorol Soc 109:737–761

    Google Scholar 

  • Sillmann J, Croci-Maspoli M (2009) Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys Res Lett 36:L10702. doi:10.1029/2009GL038259

    Article  Google Scholar 

  • Sillmann J, Croci-Maspoli M, M K, Kats RW (2011) Extreme cold winter temperatures in Europe under the influence of north Atlantic atmospheric blocking. J Clim 24:5899–5913. doi:10.1175/2011JCLI4075.1

    Article  Google Scholar 

  • Sterl A, Severijns C, Dijkstra H et al (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14703. doi:10.1029/2008GL034071

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of cmip5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus 42A:343–365. doi:10.1034/j.1600-0870.1990.t01-2-00003.x

    Google Scholar 

  • Trigo R, Trigo I, DaCamara C, Osborn TJ (2004) Climate impact of the European winter blocking episodes from the NCEP/NCAR reanalysis. Clim Dyn 23:17–28. doi:10.1007/s00382-004-0410-4

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons et al AJ (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vial J, Osborn T (2012) Assessment of atmosphere-ocean general circulation model simulations of winter northern hemisphere atmospheric blocking. Clim Dyn 39:95–112. doi:10.1007/s00382-011-1177-z

    Article  Google Scholar 

  • von Storch H, Zwiers FW (2003) Statistical analysis in climate research, 1st edn. Cambridge University Press, Cambridge

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, international geophysics series, vol 91, 2nd edn. Academic Press, London

  • Woollings T (2010) Dynamical influences on European climate: an uncertain future. Phil Trans R Soc A 368:3733–3756. doi:10.1098/rsta.2010.0040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hylke de Vries.

Appendix

Appendix

1.1 Uncertainty estimation

Non-parametric bootstrap (von Storch and Zwiers 2003) is used to determine confidence intervals for seasonal mean blocking frequencies. For each period, 1,000 artificial 17-member ensembles were generated by randomly selecting (with replacement) seasonal blocking frequency patterns from the Essence ensemble. The underlying assumption for the bootstrap is that seasonal blocking frequencies are uncorrelated. Also 10,000 artificial 1-member ensembles were generated in the same way, to estimate uncertainties in 30-year blocking frequencies.

1.2 TM-index for other latitudes

Figures 9 and 10 show the two-dimensional blocking frequency patterns obtained for the TM-index.

Fig. 9
figure 9

Two-dimensional seasonal TM-index (contours, drawn at 2x% with x = (−5,5) indicated by the labels) and 100-year trend (Shading, units %). Areas where the trend is not significant at 90 % confidence level according to a standard t test have been crossed. (bottom row) As top row, but for persistent blocking (≥ 5 days)

Fig. 10
figure 10

As in Fig. 9 but for persistent blocking (≥ 5 days)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, H., Woollings, T., Anstey, J. et al. Atmospheric blocking and its relation to jet changes in a future climate. Clim Dyn 41, 2643–2654 (2013). https://doi.org/10.1007/s00382-013-1699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1699-7

Keywords

Navigation