Skip to main content

Advertisement

Log in

Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: the ocean data assimilation system. Mon Weather Rev 126:1013–1021

    Article  Google Scholar 

  • Biastoch A, Böning SW, Lutjeharms JRE (2008) Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature 456:498–492

    Article  Google Scholar 

  • Brandt P, Caniaux G, Bourles B, Lazar A, Dengler M, Funk A, Hormann V, Giordani H, Marin F (2011) Equatorial upper-ocean dynamics and their [sic] interaction with the West African monsoon. Atmos Sci Lett 12:24–30. doi:10.1002/asl.287

    Article  Google Scholar 

  • Breugem W-P, Chang P, Jang CJ, Mignot J, Hazeleger W (2008) Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus 60:885–897

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn 35:75–94

    Article  Google Scholar 

  • Colas F, McWilliams JC, Capet X, Kurian J (2011) Heat balance and eddies in the Peru-Chile current system. Clim Dyn. doi:10.1007/s00382-011-1170-6

  • Corre L, Terray L, Balmaseda M, Ribes A, Weaver A (2012) Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? Clim Dyn 38:877–896. doi:10.1007/s00382-010-0950-8

    Article  Google Scholar 

  • Davey MK, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington WM, Yoshikawa I, Yu J-Y, Yukimoto S, Zebiak SE (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420. doi:10.1007/s00382-001-0188-6

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, Tavolato C, Thpaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137/656:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niñno–Southern Oscillation (ENSO) variance by Atlantic Ocean seas surface temperatures. Geophys Res Lett 33:L08705. doi:10.1029/2006GL025766

    Google Scholar 

  • Doi T, Tozuka T, Yamagata T (2010) The Atlantic meridional mode and its coupled variability with the Guinea dome. J Clim 23:455–475

    Article  Google Scholar 

  • Fu X, Wang B (2009) Critical roles of the stratiform rainfall in sustaining the Madden-Julian oscillation: GCM experiments. J Clim 22:3939–3959

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. International Geophysics Series, vol 30. Academi Press, London

    Google Scholar 

  • Good P, Lowe JA, Rowell DP (2009) Understanding uncertainty in future projections for the tropical Atlantic: relationships with the unforced climate. Clim Dyn 32:205–218. doi:10.1007/s00382-008-0466-7

    Article  Google Scholar 

  • Hannay C, Williamson DL, Hack JJ, Kiehl JT, Olson JG, Klein SA, Bretherton CS, Köhler M (2009) Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J Clim 22:2871–2889

    Article  Google Scholar 

  • Hirst AC, Hastenrath S (1983) Atmosphere-ocean mechanisms of climate anomalies in the Angola-tropical Atlantic sector. J Phys Oceanogr 13:1146–1157

    Article  Google Scholar 

  • Hu Z-Z, Huang B, Hou Y-T, Wang W, Yang F, Stan C, Schneider EK (2011) Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system. Clim Dyn 36:1795–1811. doi:10.1007/s00382-010-0797-z

    Article  Google Scholar 

  • Huang B, Hu Z-Z, Jha B (2007) Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Clim Dyn 28:661–682. doi:10.1007/s00382-006-0223-8

    Article  Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Joly M, Voldoire A (2010) Role of the Gulf of Guinea in the inter-annual variability of the West African monsoon: what do we learn from CMIP3 coupled simulations? Int J Climatol 30:1843–1856

    Google Scholar 

  • Large WG, Danabasoglu G (2005) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346

    Article  Google Scholar 

  • Latif M, Keenlyside N, Bader J (2007) Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys Res Lett 34:L01710. doi:10.1029/2006GL027969

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S (2010) Analysis and reduction of systematic errors through a seamless approach in modelling weather and climate. J Clim 23:5933–5957

    Article  Google Scholar 

  • Matsuno T (1966) Quasi geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Google Scholar 

  • Merryfield W, Lee W-S, Boer G, Kharin S, Scinocca J, Flato G, Fyfe J (2011) CCCma decadal prediction for CMIP5. Poster presented at the WCRP conference “Climate Research in Service to Society”, 24–28 October 2011, Denver (CO), USA

  • Meehl GA et al (2009) Decadal prediction—can it be skillful? Bull Am Meteorol Soc 90:1467–1485. doi:10.1175/2009BAMS2778.1

    Google Scholar 

  • Philander SG (1989) El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego, CA, 1990

  • Polo I, Lazar A, Rodriguez-Fonseca B, Arnault S (2008) Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterisation. J Geophys Rev 113:C07009. doi:10.1029/2007JC004495

    Article  Google Scholar 

  • Reason CJC, Rouault M (2006) Sea surface temperature variability in the tropical southeast Atlantic ocean and West African rainfall. Geophys Res Lett 33:L21705. doi:10.1029/2006GL027145

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598. doi:10.1007/s00382-008-0364-z

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Komori N, Yamagata T (2010) On the triggering of Benguela Niños: remote equatorial versus local influences. Geophys Res Lett 37:L20604. doi:10.1029/2010GL044461

    Google Scholar 

  • Richter I, Xie S-P, Wittenberg AT, Masumoto Y (2011) Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim Dyn. doi:10.1007/s00382-011-10838-9

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the south Atlantic convergence zone. Mon Weather Rev 128:2947–2957

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1175/2010BAMS3001.1

    Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Pan H-L, Behringer D, Hou Y-T, Chuang H-y, Iredell M, Ek M, Meng J, Yang R, van den Dool H, Zhang Q, Wang W, Chen M (2013) The NCEP climate forecast system version 2. Submitted to J Clim. http://cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  • Toniazzo T, Mechoso CR, Shaffrey LC, Slingo JM (2010) Upper-ocean heat budget and ocean eddy transport in the south-east Pacific in a high-resolution coupled model. Clim Dyn 35:1309–1329. doi:10.1007/s00382-009-0703-8

    Article  Google Scholar 

  • Vannière B, Guilyardi E, Madec G, Doblas-Reyes FJ, Woolnough S (2013) Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40:963–981

    Google Scholar 

  • Wahl S, Latif M, Park W, Keenlyside N (2009) On the tropical Atlantic SST warm bias in the Kiel climate model. Clim Dyn. doi:10.1007/s00382-009-0690-9

  • Wang C, Lee S-K, Mechoso CR (2010) Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J Clim 23/2:404–418

    Article  Google Scholar 

  • Williams CJR, Kniveton DR, Layberry R (2008) Influence of south Atlantic sea surface temperatures on rainfall variability and extremes over southern Africa. J Clim 21:6498–6520. doi:10.1175/2008JCLI2234.1

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes (OAFlux)for the global oceans. Bull Am Meteorol Soc 88:527–539

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Natural Environment Research Council [NE/J005126/1]. GODAS and NOAA-OI-SST-V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. EN3 data obtained from http://www.metoffice.gov.uk/hadobs/en3/data/EN3_v2a/download_EN3_v2a.html. The CFSR data was developed by NOAA’s National Centers for Environmental Prediction (NCEP), and were obtained from NOAA’s National Operational Model Archive and Distribution System (NOMADS) which is maintained at NOAA’s National Climatic Data Center (NCDC). ERA-Interim data were obtained from the ECMWF data portal, http://data-portal.ecmwf.int/data/. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Inter-comparison provides coordinating support and led development of software infrastructure in partnership with the Global Organisation for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Toniazzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toniazzo, T., Woolnough, S. Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn 43, 2889–2913 (2014). https://doi.org/10.1007/s00382-013-1691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1691-2

Keywords

Navigation