Skip to main content

Advertisement

Log in

Decadal changes in the relationship between the Indian and Australian summer monsoons

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we investigate a long-term modulation in the relationship between Indian summer monsoon rainfall with the subsequent Australian summer monsoon rainfall. The two monsoon rainfall time series are significantly correlated at 0.3 at the 99 % confidence level. However, the relationship weakens during the 1932–1966 period, with the inter-monsoon correlation for the period falling below statistical significance. We find that this modulation is consistent with a breakdown of the typical El Niño-Southern Oscillation (ENSO) influence on sea surface temperature in the northern region of Australia, during this period. In addition, a change in the relative influences of ENSO and Indian Ocean Basin-wide Warming sea surface temperature anomalies on the Australian summer monsoon rainfall is also apparent across different time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The NINO3 index, and EMI (Ashok et al. 2007) are defined as the area-averaged SSTA over the box 90°W–150°W, 5°S–5°N, and 165°E–140°W, 10°S–10°N, respectively. The IODMI is defined as the gradient of SSTA between the two boxes 50°E–70°E, 10°S–10°N, and 90°E–110°E, 0°–10°S (Saji et al. 1999). The JJAS and DJF seasonal anomalies have obtained by averaging all the monthly anomalies of the respective season. The IOBW has been obtained, following Yang et al., by area-averaging the SSTA for the DJF season over [40°E–110° E, 20°S–20°N].

  2. Those summers when the NINO3 index exceeds 1 standard deviation.

  3. The statistical significance for the sub-periods I, II, and III at the 80 % confidence level from a 2-tailed t test are, respectively, 0.24, 0.21, and 0.25.

References

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean dipole. J Meteo Soc Jpn 81:41–56

    Article  Google Scholar 

  • Ashok K, Chan Wing-Le, Motoi Tatsuo, Yamagata Toshio (2004) Decadal variability of the Indian Ocean dipole. Geophys Res Lett. doi:10.1029/2004GL021345

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res. doi:10.1029/2006JC003798

    Google Scholar 

  • Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett. doi:10.1029/2011GL050232

    Google Scholar 

  • Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett. doi:10.1029/2009GL037885

    Google Scholar 

  • Cai W, Cowan T, Sullivan A (2009) Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and their impact on Australian rainfall. Geophys Res Lett. doi:10.1029/2009GL037604

    Google Scholar 

  • Chambers DP, Tapley BD, Stewart RH (1999) Anomalous warming in the Indian Ocean coincident with El Niño. J Geophys Res 104:3035–3047

    Article  Google Scholar 

  • Chang CP, Li Tim (2000) A theory for the tropical Tropospheric Biennial Oscillation. J Atmos Sci 57(14):2209–2224

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett. doi:10.1029/2006GL025766

    Google Scholar 

  • Fasullo J (2004) Biennial characteristics of all India rainfall. J Clim 17:2972–2982. doi:10.1175/1520-442(2004)017<2972:BCOIMR>2.0.CO;2

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Folland CK, Parker DE, Colman A, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Nino: decadal and interdecadal climate variability. Springer, Berlin, pp 73–100

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett. doi:10.1029/2005GL024803

    Google Scholar 

  • Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16:1775–1790

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Liu G (2012) The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J Clim 25:1278–1290

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Google Scholar 

  • Joseph PV, Liebmann B, Hendon HH (1991) Interannual variability of the Australian summer monsoon onset: possible influence of Indian summer monsoon and El Niño. J Clim 4:529–538

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Knutson TR, Manabe S (1998) Model assessment of decadal variability and trends in the tropical Pacific Ocean. J Clim 11:2273–2296

    Article  Google Scholar 

  • Krishna Kumar K, Rajgopalan B, Cane MK (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Hoerting M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El-Nino (global publicity). Science 314:115–119

    Article  Google Scholar 

  • Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-Il (2009) Two types of El Niño Events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Lavery BM, Joung G, Nicholls N (1997) An extended high quality historical rainfall data set for Australia. Aust Meteorol Mag 46:27–38

    Google Scholar 

  • Li Y, Jourdain NC, Taschetto AS, Ummenhofer CC, Ashok K, Gupta AS (2012) Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models. Geophys Res Lett 39:L20713

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Gualdi S, Navarra A, Delecluse P, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett. doi:10.1029/2003GL018649

    Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Google Scholar 

  • McBride JL, Nicholls N (1983) Seasonal relationships between Australian rainfall and the southern oscillation. Mon Weather Rev 111:1998–2004

    Article  Google Scholar 

  • Meehl GA (1987) The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon Weather Rev 115:27–50

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2001) The Tropospheric Biennial Oscillation and Indian monsoon rainfall. Geophys Res Lett 28:1731–1734

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2002) The Tropospheric Biennial Oscillation and Asian–Australian monsoon rainfall. J Clim 15:722–744

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2011) Decadal variability of Asian–Australian monsoon-ENSO–TBO relationships. J Clim. doi:10.1175/2011JCLI4015.1

    Google Scholar 

  • Meehl GA, Arblaster JM (2012) Relating the strength of the tropospheric biennial oscillation (TBO) to the phase of the Interdecadal Pacific Oscillation (IPO). Geophys Res Lett. doi:10.1029/2012GL053386

  • Meehl GA, Julie M, Arblaster JM, Caron HA, Jochum M, Chakraborty A, Murtugudde R (2012) Monsoon regimes and processes in CCSM4 part I: the Asian–Australian monsoon. J Clim 25:2583–2608

    Article  Google Scholar 

  • Nicholls N (1981) Air–sea interaction and the possibility of long-range weather prediction in the Indonesian Archipelago. Mon Weather Rev 109:2435–2443

    Article  Google Scholar 

  • Nicholls N, McBride JL, Ormerod RJ (1982) On predicting the onset of the Australian wet season at Darwin. Mon Weather Rev 110:14–17

    Article  Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn 67:375–383

    Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224

    Article  Google Scholar 

  • Power S, Tseitkin F, Torok S, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes. Aust Meteorol Mag 47:85–101

    Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91(3):296–306

    Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Inter-annual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep Sea Res II 49:1549–1572

    Article  Google Scholar 

  • Rasmussen EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Saji NH, Xie S-P, Yamagata T (2006) Tropical Indian Ocean variability in the IPCC Twentieth-century climate simulations. J Clim 19:4397–4417

    Article  Google Scholar 

  • Shukla J, Paolino DA (1983) The southern oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837

    Article  Google Scholar 

  • Sontakke NA, Pant GB, Singh N (1993) Construction of all-India summer monsoon rainfall series for the period 1844–1991. J Clim 6:1807–1811

    Article  Google Scholar 

  • Taschetto AS, Alex SG, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean Sea surface temperature anomalies on Australian summer rainfall during El Niño Events. J Clim 24:3734–3747

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO–monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Behera SK, Yamagata T (2005) Annual ENSO simulated in a coupled ocean–atmosphere model. Dyn Atmos Ocean 39(1–2):41–60

    Article  Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Yamagata T (2007) Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J Clim 20:2881–2894

    Article  Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Yamagata T (2008) Tropical Indian Ocean variability revealed by self-organizing maps. Clim Dyn 31:333–343

    Article  Google Scholar 

  • Ummenhofer C, Alexander Sen Gupta, Peter R Briggs, Matthew H England, Peter C Mcintosh, Gary A Meyers, Michael J Pook, Michael R Raupach, and James S Risbey (2011) Indian and Pacific Ocean Influences on Southeast Australian Drought and Soil Moisture. J Climate doi: 10.1175/2010JCLI3475

  • Wang G, Hendon H (2007) Sensitivity of Australian rainfall to inter–El Niño variations. J Climate 20:4211–4226

    Article  Google Scholar 

  • Weng H, Ashok Karumuri, Swadhin K, Behera SuryachandraA, Rao ToshioYamagata (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29(2–3):113–129

    Article  Google Scholar 

  • Weng H, Swadhin K, Behera ToshioYamagata (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674

    Article  Google Scholar 

  • Wu R, Kirtman BP (2007) Regimes of seasonal air–sea interaction and implications for performance of forced simulations. Climate Dyn 29:393–410

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR, Rao SA (2004) Coupled ocean–atmosphere variability in the tropical Indian Ocean Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr 147:189–211

    Article  Google Scholar 

  • Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett. doi:10.1029/2006GL028571

    Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yu JY, Kim ST (2010) Three evolution patterns of central-Pacific El Nino. Geophys Res Lett. doi:10.1029/2010GL042810

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge discussions with Harry Hendon. Constructive comments from two anonymous reviewers of an earlier version have helped in improving the manuscript. Karumuri Ashok acknowledges the support of Prof. B. N. Goswami, Director of the Indian Institute of Tropical Meteorology (IITM). The Center for Climate Change Research of the IITM is funded by the Ministry of Earth Sciences, Govt. of India. Nagaraju acknowledges the support of Akshara Kaginalkar, Associate director, Center for Development of Advanced Computing (C-DAC) Pune. Alex Sengupta acknowledges funding by the Australian Research Council grant DP110100601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karumuri Ashok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

382_2012_1625_MOESM1_ESM.tif

Supplementary material Figure S1: Homogeneous monsoon regions of India and Australia. ISMR calculated as area-averaged rainfall over the Indian land mass from June to September and ASMR calculated as area-averaged rainfall over the region 120°E–154°E, 22°S–10°S from December to following February of each year. (TIFF 4100 kb)

382_2012_1625_MOESM2_ESM.tif

Supplementary material Figure S2: Rainfall anomaly composite during El Niño events from 1900 to 2009 over India (left) and Australia (right). (TIFF 4596 kb)

382_2012_1625_MOESM3_ESM.tif

Supplementary material Figure S3: IOBM–ASMR correlations removing El Niño Modoki (upper panel) and NINO3–ASMR correlation removing El Niño Modoki (lower panel) for 1903–1931 (1st column), 1932–1966 (2nd column), 1967–1992 (3rd column) and 1993–2009 (4th column). (TIFF 9339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashok, K., Nagaraju, C., Gupta, A.S. et al. Decadal changes in the relationship between the Indian and Australian summer monsoons. Clim Dyn 42, 1043–1052 (2014). https://doi.org/10.1007/s00382-012-1625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1625-4

Keywords

Navigation