Skip to main content

Advertisement

Log in

The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The coupled climate model EC-Earth2 is used to investigate the impact of direct radiative effects of aerosols on stationary waves in the northern hemisphere wintertime circulation. The direct effect of aerosols is simulated by introducing prescribed mixing ratios of different aerosol compounds representing pre-industrial and present-day conditions, no indirect effects are included. In the EC-Earth2 results, the surface temperature response is uncorrelated with the highly asymmetric aerosol radiative forcing pattern. Instead, the anomalous extratropical temperature field bears a strong resemblance to the aerosol-induced changes in the stationary-wave pattern. It is demonstrated that the main features of the wave pattern of EC-Earth2 can be replicated by a linear, baroclinic model forced with latent heat changes corresponding to the anomalous convective precipitation generated by EC-Earth2. The tropical latent heat release is an effective means of generating stationary wave trains that propagate into the extratropics. Hence, the results of the present study indicate that aerosol-induced convective precipitation anomalies govern the extratropical wave-field changes, and that the far-field temperature response dominates over local effects of aerosol radiative forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen RJ, Sherwood SC (2011) The impact of natural versus anthropogenic aerosols on atmospheric circulation in the community atmospheric model. Clim Dyn 36:1959–1978. doi:10.1007/s00382-010-0898-8

    Article  Google Scholar 

  • Ambrizzi T, Hoskins BJ (1997) Stationary Rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919–928

    Article  Google Scholar 

  • Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell M, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351. doi:10.1002/qj.289

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(6055):502–505. doi:10.1126/science.1204994

    Article  Google Scholar 

  • Boucher O, Pham M (2002) History of sulfate radiative forcings. Geophys Res Lett 29(9). doi:10.1029/2001GL014048

  • Brandefelt J, Körnich H (2008) Northern hemisphere stationary waves in future climate projections. J Clim 21:6341–6353

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to northern hemisphere cooling. Geophys Res Lett 33. doi:10.1029/2005GL024546

  • Chen WT, Liao H, Seinfeld JH (2007) Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases. J Geophys Res 112. doi:10.1029/2006JD008051

  • Chou C, Neelin JD, Lohmann U, Feichter J (2005) Local and remote impacts of aerosol climate forcing on tropical precipitation. J Clim 18:4621–4631

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2003) South Asian haze forcing: remote impacts with implications to ENSO and AO. J Clim 16:1791–1806

    Article  Google Scholar 

  • Chung CE, Ramanathan V, Kiehl JT (2002) Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange. J Clim 15:2462–2476

    Article  Google Scholar 

  • Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res 110:18707–18726. doi:10.1029/2004JD005441

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth's atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fraedrich K, Lunkeit F, Kirk E (1998) PUMA: portable university model of the atmosphere. DKRZ-Hamburg, dKRZ technical report 16

  • Gastineau G, Li L, LeTreut H (2011) Some atmospheric processes governing the large-scale tropical circulation in idealized aquaplanet simulations. J Atmos Sci 68(12):553–575

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 1–19. doi:10.1007/s00382-011-1228-5

  • Held I, Ting M, Wang H (2002) Northern winter stationary waves: theory and modeling. J Clim 15:2125–2144

    Article  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79:831–844

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Aardenne JV, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039. doi:10.1029/2007GL030541

    Article  Google Scholar 

  • Liakka J, Nilsson J, Löfverström M (2012) Interaction between stationary waves and ice sheets: linear versus nonlinear atmospheric response. Clim Dyn 38(5–6):1249–1262. doi:10.1007/s00382-011-1004-6

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modlisation. Institut Pierre-Simon Laplace (IPSL), France, no. 27. ISSN: 1288-1619

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11:3247–3267

    Article  Google Scholar 

  • Ming Y, Ramaswamy V (2009) Nonlinear climate and hydrological responses to aerosol effects. J Clim 22:1329–1339. doi:10.1175/2008JCLI2362.1

    Article  Google Scholar 

  • Ming Y, Ramaswamy V (2011) A model investigation of aerosol-induced changes in tropical circulation. J Clim 24:5125–5133. doi:10.1175/2011JCLI4108.1

    Article  Google Scholar 

  • Ming Y, Ramaswamy V, Chen G (2011) A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J Clim 24:6077-6091. doi:10.1175/2011JCLI4111.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. Springer, New York

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional changes due to black carbon. Nature 1:221–227. doi:10.1038/ngeo156

    Google Scholar 

  • Roberts DL, Jones A (2004) Climate sensitivity to black carbon aerosol from fossil fuel combustion. Geophys Res Lett 109. doi:10.1029/2004JD004676

  • Rodwell MJ, Jung T (2008) Understanding the local and global impacts of model physics changes: an aerosol example. Q J R Meteorol Soc 134:1479–1497. doi:10.1002/qj.298

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. Wiley, NJ

    Google Scholar 

  • Shindell D, Schulz M, Ming Y, Takemura T, Faluvegi G, Ramaswamy V (2010) Spatial scales of climate response to inhomogeneous radiative forcing. J Geophys Res Atmos 115. doi:10.1029/2010JD014108

  • Shindell DT, Lamarque JF, Schulz M, Flanner M, Jiao C, Chin M, Young P, Lee YH, Rotstayn L, Milly G, Faluvegi G, Balkanski Y, Collins WJ, Conley AJ, Dalsoren S, Easter R, Ghan S, Horowitz L, Liu X, Myhre G, Nagashima T, Naik V, Rumbold S, Skeie R, Sudo K, Szopa S, Takemura T, Voulgarakis A, Yoon JH (2012) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys Discuss. doi:10.5194/acpd-12-21105-2012

  • Simmons AJ (1982) The forcing of stationary wave motion by tropical diabatic heating. Q J R Meteorol Soc 108:503–534

    Article  Google Scholar 

  • Skeie RB, Berntsen TK, Myhre G, Tanaka K, Kvalevag MM, Hoyle CR (2011) Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos Chem Phys 11(22):11827–11857. doi:10.5194/acp-11-11827-2011

    Article  Google Scholar 

  • Smagorinsky J (1953) The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Q J R Meteorol Soc 79:342–366

    Article  Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100:18707–18726

    Article  Google Scholar 

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction opticla thickness: estimates from model results. J Geophys Res 102:23895–23915

    Article  Google Scholar 

  • Ting M (1996) Steady linear response to tropical heating in barotropic and baroclinic models. J Atmos Sci 53(12):1698–1709

    Article  Google Scholar 

  • Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathire J, Metzger S, Hauglustaine DA, Kanakidou M (2006) Change in global aerosol composition since preindustrial times. Atmos Chem Phys 6:5143–5162. http://www.atmos-chem-phys.net/6/5143/2006/

    Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism 2–5). PRISM report series, no 2, 6th edn

  • Wang C (2007) Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett 34. doi:10.1029/2006GL028416

Download references

Acknowledgments

This work was funded by the Mistra Swedish Research Programme for Climate Impacts and Adaptation (Mistra-SWECIA) and the Bert Bolin Centre for Climate Research. We thank Erland Källén for discussions and contributions during the initiation of the project and Marcus Löfverström for providing the linearised model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lewinschal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewinschal, A., Ekman, A.M.L. & Körnich, H. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves. Clim Dyn 41, 647–661 (2013). https://doi.org/10.1007/s00382-012-1622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1622-7

Keywords

Navigation