Skip to main content

Advertisement

Log in

Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

High-resolution sedimentary paleoclimate proxy records offer the potential to expand the detection and analysis of decadal- to centennial-scale climate variability during recent millennia, particularly within regions where traditional high-resolution proxies may be short, sparse, or absent. However, time uncertainty in these records potentially limits a straightforward objective identification of broad-scale patterns of climate variability. Here, we describe a procedure for identifying common patterns of spatiotemporal variability from time uncertain sedimentary records. This approach, which we term Monte Carlo Empirical Orthogonal Function analysis, uses iterative age modeling and eigendecomposition of proxy time series to isolate common regional patterns and estimate uncertainties. As a test case, we apply this procedure to a diverse set of time-uncertain lacustrine proxy records from East Africa. We also perform a pseudoproxy experiment using climate model output to examine the ability of the method to extract shared anomalies given known signals. We discuss the advantages and disadvantages of our approach, including possible extensions of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc U S Natl Acad Sci 104(10):3713–3718

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for classical age-modelling of radiocarbon sequences. Quat Geochronol 5(5):512–518

    Article  Google Scholar 

  • Blaauw M, Christen J (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474

    Article  Google Scholar 

  • Blaauw M, Heuvelink GBM, Mauquoy D, van der Plicht J, van Geel B (2003) A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quat Sci Rev 22:1485–1500

    Article  Google Scholar 

  • Blaauw M, Christen J, Mauquoy D, van der Plicht J, Bennett K (2007) Testing the timing of radiocarbon-dated events between proxy archives. Holocene 17(2):283

    Article  Google Scholar 

  • Blockley S, Blaauw M, Bronk Ramsey C, van der Plicht J (2007) Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quat Sci Rev 26(15–16):1915–1926

    Article  Google Scholar 

  • Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–430

    Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27(1):42–60

    Article  Google Scholar 

  • Brown ET, Johnson TC (2005) Coherence between tropical East African and South American records of the Little Ice Age. Geochem Geophys Geosyst 6:Q12005

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan J, Herzig F, Heussner K, Wanner H, Luterbacher J, Esper J (2011) 2500 years of european climate variability and human susceptibility. Science 331(6017):578

    Article  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21(8):973–1005

    Article  Google Scholar 

  • Carlson R, Fritsch F (1985) Monotone piecewise bicubic interpolation. SIAM J Numer Anal 22:386–400

    Article  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivariate Behavioral Research 1(2):245–276

    Article  Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402

    Article  Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The segment length curse in long tree-ring chronology development for paleoclimatic studies. Holocene 5:229–237

    Article  Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12(4):1145–1162

    Article  Google Scholar 

  • Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16(2-3):79–91

    Article  Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328(5977):486–489. doi:10.1126/science.1185188

    Article  Google Scholar 

  • Dommenget D (2007) Evaluating EOF modes against a stochastic null hypothesis. Clim Dyn 28:517—531

    Article  Google Scholar 

  • Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Clim 15:216–225

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (1998) Optimal sites for coral-based reconstruction of global sea surface temperature. Paleoceanography 13:502–516. doi:10.1029/98PA02132

    Article  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17. doi:10.1029/2000PA000590

  • Fritts HC (1991) Reconstructing large-scale climatic patterns from tree-ring data: a diagnostic analysis. University of Arizona Press, London

    Google Scholar 

  • Fritts HC, Blasing TJ, Hayden BP, Kutzbach JE (1971) Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. J Appl Meteorol 10:845–864

    Article  Google Scholar 

  • Gagan M, Ayliffe L, Beck J, Cole J, Druffel E, Dunbar R, Schrag D (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19(1–5):45–64

    Article  Google Scholar 

  • Garcin Y, Williamson D, Taieb M, Vincens A, Mathe PE, Majule A (2006) Centennial to millennial changes in maar-lake deposition during the last 45,000 years in tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 239(3–4):334–354

    Article  Google Scholar 

  • Garcin Y, Williamson D, Bergonzini L, Radakovitch O, Vincens A, Buchet G, Guiot J, Brewer S, Mathe PE, Majule A (2007) Solar and anthropogenic imprints on Lake Masoko (southern Tanzania) during the last 500 years. J Paleolimnol 37(4):475–490

    Article  Google Scholar 

  • Gibert E, Bergonzini L, Massault M, Williamson D (2002) AMS-C14 chronology of 40.0 cal ka BP continuous deposits from a crater lake (Lake Massoko, Tanzania)—modern water balance and environmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 187(3–4):307–322

    Article  Google Scholar 

  • Goslar T, Van Der Knaap WO, Kamenik C, Van Leeuwen JFN (2009) Free-shape 14C age–depth modelling of an intensively dated modern peat profile. J Quat Sci 24(5):481–499

    Article  Google Scholar 

  • Grudd H, Briffa KR, Karlen W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–665

    Article  Google Scholar 

  • Hannachi A, Jolliffe I, Stephenson D, Trendafilov N (2006) In search of simple structures in climate: simplifying EOFs. Int J Climatol 26(1):7–28

    Article  Google Scholar 

  • Hannachi A, Jolliffe I, Stephenson D (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27(9):1119–1152

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618

    Article  Google Scholar 

  • Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666

    Article  Google Scholar 

  • Janowiak J (1988) An investigation of interannual rainfall variability in Africa. J Clim 1:240–255

    Article  Google Scholar 

  • Jansen EJ, Overpeck JT, Briffa K, Duplessy JC, Joos F,Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Johnson T, McCave I (2008) Transport mechanism and paleoclimatic significance of terrigenous silt deposited in varved sediments of an African rift lake. Limnol Oceanogr 53(4):1622–1632

    Article  Google Scholar 

  • Johnson TC, Barry SL, Chan Y, Wilkinson P (2001) Decadal record of climate variability spanning the past 700 yr in the Southern Tropics of East Africa. Geology 29(1):83–86

    Article  Google Scholar 

  • Jolliffe I, Uddin M, Vines S (2002) Simplified eofs-three alternatives to rotation. Clim Res 20(3):271–279

    Article  Google Scholar 

  • Jolliffe IT (1987) Rotation of principal components: some comments. Int J Climatol 7(5):507–510

    Article  Google Scholar 

  • Jolliffe IT (1995) Rotation of principal components: choice of normalization constraints. J Appl Stat 22(1):29–35

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19(1):3

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20(1):141–151

    Article  Google Scholar 

  • Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, 2k Project Members AL (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239

    Google Scholar 

  • LaMarche VCJ (1974) Paleoclimatic inferences from long tree-ring records. Science 183:1043–1048

    Article  Google Scholar 

  • Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260:1104–1106

    Article  Google Scholar 

  • Long A, Rippeteau B (1974) Testing contemporaneity and averaging radiocarbon dates. Am Antiq 39(2):205–215

    Article  Google Scholar 

  • Lough J (2010) Climate records from corals. Wiley Interdiscip Rev Clim Change 1(3):318–331

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Mestas-Nuñez AM (2000) Orthogonality properties of rotated empirical modes. Int J Climatol 20(12):1509–1516

    Article  Google Scholar 

  • Michczynski A (2007) Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49(2):393–401

    Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Monahan AH, Fyfe JC, Ambaum MHP, Stephenson DB, North GR (2009) Empirical orthogonal functions: the medium is the message. J Clim 22(24):6501–6514

    Article  Google Scholar 

  • Navarra A, Simoncini V (2010) A guide to empirical orthogonal functions for climate data analysis. Springer, New York

    Book  Google Scholar 

  • Nicholson SE, Kim E (1997) The relationship of the El Niño Southern Oscillation to African rainfall. Int J Climatol 17(2):117–135

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng F (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Technical report, U.S. Weather Bureau research paper 45

  • Pilcher J, Baillie M, Schmidt B, Becker B (1984) A 7,272-year tree-ring chronology for western Europe. Nature 312(5990):150–152

    Article  Google Scholar 

  • Preisendorfer RW, Mobley CD (1988) Principal component analysis in meteorology and oceanography. Elsevier, New York

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon 51(4):1111–1150

    Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Ropelewski C, Halpert M (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626

    Article  Google Scholar 

  • Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: Intertropical Convergence Zone migrations and El Niño-Southern Oscillation variability. Geology 35:21–24

    Article  Google Scholar 

  • Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quat Res 67(1):57–68

    Article  Google Scholar 

  • Schneider T, Neumaier A (2001) Algorithm 808: ARfit—a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27(1):58–65

    Article  Google Scholar 

  • Smerdon JE (2012) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. Wiley Interdiscip Rev Clim Change Early View 3(1):63–77

  • Stager J, Ruzmaikin A, Conway D, Verburg P, Mason P (2007) Sunspots, El Niño, and the levels of Lake Victoria, East Africa. J Geophys Res 112(D15):D15106

    Article  Google Scholar 

  • Stager JC, Ryves DB, Cumming BF, Meeker LD, Beer J (2005) Solar variability and the levels of Lake Victoria, East Africa, during the last millenium. J Paleolimnol 33(2):243–251

    Article  Google Scholar 

  • Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J 20:249–253

    Google Scholar 

  • Stuiver M, Reimer P (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35(1):215–230

    Google Scholar 

  • Telford R, Heegaard E, Birks H (2004a) All age-depth models are wrong: but how badly? Quat Sci Rev 23(1–2):1–5

    Article  Google Scholar 

  • Telford R, Heegaard E, Birks H (2004b) The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14(2):296

    Article  Google Scholar 

  • Tierney J, Mayes M, Meyer N, Johnson C, Swarzenski P, Cohen A, Russell J (2010) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nature Geosci 3(6):422–425

    Article  Google Scholar 

  • Tierney JE, Smerdon JE, Anchukaitis KJ, Seager R (2012) Decadal-to-centennial variability in East African hydroclimate controlled by the Indian Ocean. Nature (submitted to)

  • Verschuren D (2001) Reconstructing fluctuations of a shallow East African lake during the past 1800 yrs from sediment stratigraphy in a submerged crater basin. J Paleolimnol 25(3):297–311

    Article  Google Scholar 

  • Verschuren D (2004) Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 219–256

    Google Scholar 

  • Verschuren D, Laird KR, Cumming BF (2000) Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature 403(6768):410–414

    Article  Google Scholar 

  • Verschuren D, Sinninghe Damsté JS, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug GH (2009) Half-precessional dynamics of monsoon rainfall near the East African equator. Nature 462(7273):637–641

    Article  Google Scholar 

  • Wolff C, Haug G, Timmermann A, Sinninghe Damsté J, Brauer A, Sigman D, Cane M, Verschuren D (2011) Reduced interannual rainfall variability in East Africa during the Last Ice Age. Science 333(6043):743–747

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dan Amrhein, Ed Cook, Julien Emile-Geay and Martin Tingley for useful discussion, and two anonymous reviewers for their helpful feedback. J. E. T. acknowledges the UCAR Climate and Global Change Postdoctoral Fellowship for support. Example MATLAB code for the MCEOF procedure is available from the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Anchukaitis.

Additional information

The authors contributed equally to this work. LDEO Contribution number 7585.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anchukaitis, K.J., Tierney, J.E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim Dyn 41, 1291–1306 (2013). https://doi.org/10.1007/s00382-012-1483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1483-0

Keywords

Navigation