Skip to main content

Advertisement

Log in

Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A continental scale evaluation of Antarctic surface winds is presented from global ERA-40 and ERA-Interim reanalyses and RACMO2/ANT regional climate model at 55 and 27 km horizontal resolution, based on a comparison with observational data from 115 automatic weather stations (AWS). The Antarctic surface wind climate can be classified based on the Weibull shape factor k w . Very high values (k w  > 3) are found in the interior plateaus, typical of very uniform katabatic-dominated winds with high directional constancy. In the coast and all over the Antarctic Peninsula the shape factors are similar to the ones found in mid-latitudes (k w  < 3) typical of synoptically dominated wind climates. The Weibull shape parameter is systematically overpredicted by ERA reanalyses. This is partly corrected by RACMO2/ANT simulations which introduce more wind speed variability in complex terrain areas. A significant improvement is observed in the performance of ERA-Interim over ERA-40, with an overall decrease of 14 % in normalized mean absolute error. In escarpment and coastal areas, where the terrain gets rugged and katabatic winds are further intensified in confluence zones, ERA-Interim bias can be as high as 10 m s−1. These large deviations are partly corrected by the regional climate model. Given that RACMO2/ANT is an independent simulation of the near-surface wind speed climate, as it is not driven by observations, it compares very well to the ERA-Interim and AWS-115 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06107. doi:10.1029/2004JD005667

    Article  Google Scholar 

  • Ball FK (1960) Winds on the ice slopes of Antarctica, Antarctic meteorology. Proceedings of the symposium in Melbourne, 1959, Pergamon, pp 9–16

  • Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The ERA-interim archive, ERA Report Series, ECMWF, 16 pp

  • Bromwich DH et al. (1993) Spatial and temporal characteristics of the intense katabatic winds in Terra Nova Bay, Antarctica. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. Antarctic Research Series 61:47–68

  • Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalysis in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J Clim 17:4603–4619

    Article  Google Scholar 

  • Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J Clim 24:4189–4209

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Ettema et al (2010) Climate of the Greenland ice sheet using a high-resolution climate model—part 1: evaluation. Cryosphere 4:511–527

    Article  Google Scholar 

  • Gallée J, Schayes G (1994) Development of a three-dimensional Meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Wea Rev 122:671–685

    Article  Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lazzara MA, Weidner GA, Keller LM, Thom JE, Cassano JJ (2012) Antarctic automatic weather station program: 30 years of polar observations. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00015.1

  • Lenaerts JTM, van den Broeke MR, Déry SJ, van Meijgaard E, van de Berg J, Sanz Rodrigo J (2012) Regional climate modeling of snowdrift in Antarctica, Part 1: methods and model evaluation. J Geophys Res 117:1–17

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Madsen H et al (2005) Standardizing the performance of short-term wind prediction models. Wind Eng 29:475–489

    Article  Google Scholar 

  • Munneke K et al (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res 116:D05114. doi:10.1029/2010JD015113

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1987) The surface wind field over the antarctic ice sheets. Nature 328:51–54

    Article  Google Scholar 

  • Parish TR, Bromwich DH (2007) Reexamination of the near-surface airflow over the antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon Wea Rev 135:1961–1973

    Article  Google Scholar 

  • Parish TR, Cassano JJ (2003) Diagnosis of the katabatic wind influence on the wintertime antarctic surface wind field from numerical simulations. Mon Wea Rev 131:1128–1139

    Article  Google Scholar 

  • Parish TR, Wendler G (1991) The katabatic wind regime at Adélie Land, Antarctica. Int J Climatol 11:97–107

    Article  Google Scholar 

  • Paristh TR, Walker R (2006) A re-examination of the winds of Adélie Land. Aust Met Mag 55:105–117

    Google Scholar 

  • Pettré P, Renaud MF, Déqué M, Planton S, André JC (1990) Study of the influence of katabatic flows on the antarctic circulation using GCM simulations. Meteorol Atmos Phys 43:187–195

    Article  Google Scholar 

  • Reijmer CH, van Meijgaard E, van den Broeke MR (2004) Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Boundary Layer Meteorol 111:313–337

    Article  Google Scholar 

  • Sanz Rodrigo J (2011) On Antarctic Wind Engineering, Ph.D. Thesis, Univeristé Libre de Bruxelles and von Karman Institute for Fluid Dynamics, Belgium. http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-03152011-235458/

  • Stearns CR, Wendler G (1988) Research results from antarctic automatic weather stations. Rev Geophys 26:45–61

    Article  Google Scholar 

  • Stearns CR, Keller LM, Weidner GA, Sievers M (1993) Monthly mean climatic data for antarctic automatic weather stations. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. Antarctic Research Series 61:1–21

  • Turner J et al (2004) The SCAR READER project: toward a high-quality database of mean antarctic meteorological observations. J Clim 17:2890–2898

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2005) Characteristics of the antarctic surface mass balance 1958–2002 using a regional atmospheric climate model. Ann Glaciol 41:97–104

    Article  Google Scholar 

  • Van de Berg WJ, van den Broeke MR, van Meijgaard E (2008) Spatial structures in the heat budget of the Antarctic atmospheric boundary layer. The Cryosphere 2:1–12

    Article  Google Scholar 

  • van den Broeke MR, van Lipzig NPM (2003) Factors controling the near-surface wind field in Antarctica. Mon Wea Rev 131:733–743

    Article  Google Scholar 

  • van den Broeke MR, van Lipzig NPM, van Meijgaard E (2002) Momentum brudget of the east antarctic atmospheric boundary layer: results of a regional climate model. J Atmos Sci 59:3117–3129

    Article  Google Scholar 

  • van Lipzig NPM, van Meijgaard E, Oerlemans J (1994) Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in antarctica. Mon Wea Rev 127:11994–12011

    Google Scholar 

  • van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) The spatial and temporal variability of the surface mass balance in antarctica: results from a regional climate model. Int J Climatol 22:1197–1217

    Article  Google Scholar 

  • van Lipzig NPM, Turner J, Colwell SR, van den Broeke MR (2004) The near-surface wind field over the antarctic continent, short communication. Int J Climatol 24:1973–1982

    Article  Google Scholar 

  • Van Meijgaard E, van Ulft LH, Van de Berg WJ, Bosvelt FC, Van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric model RACMO version 2.1., Technical Report 302, KNMI, De Bilt, The Netherlands

  • Wendler G, Radok U (2000) Cape denison, Eastern Antarctica, the windiest place on Earth. Antar J US 33:249–254

    Google Scholar 

  • Wendler G, Stearns C, Weidner G, Dargaud G, Parish T (1997) On the extraordinary katabatic winds of Adélie Land. J Geophys Res 102:4463–4474

    Article  Google Scholar 

  • White PW (ed) (2004) IFS documentation CY23r4: part IV physical processes. Available at: http://www.ecmwf.int/research/ifsdocs/

Download references

Acknowledgments

The authors would like to thank the institutes responsible for conducting the various AWS programs used in this study and for making this data freely available for the research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sanz Rodrigo.

Appendices

Appendix 1: List of AWS stations

See Table 3 and Figs. 13,14,15.

Table 3 The AWS-115 list of stations, data periods and availability
Fig. 13
figure 13

Map of RACMO2/ANT2 NRPS and zoom in the Victoria Land coast

Fig. 14
figure 14

Situation map of AWS-115 stations

Fig. 15
figure 15

Situation map of Weddle Sea sector

Fig. 16
figure 16

Situation map of Victoria Land

Appendix 2: Evaluation results for each AWS site

See Tables 4 and 5.

Table 4 Long term statistics
Table 5 Evaluation results for each AWS site using mixed reference years

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz Rodrigo, J., Buchlin, JM., van Beeck, J. et al. Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Clim Dyn 40, 353–376 (2013). https://doi.org/10.1007/s00382-012-1396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1396-y

Keywords

Navigation