Skip to main content
Log in

Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The boreal summer intraseasonal oscillation (BSISO) has strong convective activity centers in Indian (I), Western North Pacific (WNP), and North American (NA) summer monsoon (SM) regions. The present study attempts to reveal BSISO teleconnection patterns associated with these dominant intraseasonal variability centers. During the active phase of ISM, a zonally elongated band of enhanced convection extends from India via the Bay of Bengal and Philippine Sea to tropical central Pacific with suppressed convection over the eastern Pacific near Mexico. The corresponding extratropical circulation anomalies occur along the waveguides generated by the North African-Asian jet and North Atlantic-North European jet. When the tropical convection strengthens over the WNPSM sector, a distinct great circle-like Rossby wave train emanates from the WNP to the western coast of United States (US) with an eastward shift of enhanced meridional circulation. In the active phase of NASM, large anticyclonic anomalies anchor over the western coast of US and eastern Canada and the global teleconnection pattern is similar to that during a break phase of the ISM. Examination of the evolution of the BSISO teleconnection reveals quasi-stationary patterns with preferred centers of teleconnection located at Europe, Russia, central Asia, East Asia, western US, and eastern US and Canada, respectively. Most centers are embedded in the waveguide along the westerly jet stream, but the centers at Europe and Russia occur to the north of the jet-induced waveguide. Eastward propagation of the ISO teleconnection is evident over the Pacific-North America sector. The rainfall anomalies over the elongated band near the monsoon domain over the Indo-western Pacific sector have an opposite tendency with that over the central and southern China, Mexico and southern US, providing a source of intraseasonal predictability to extratropical regions. The BSISO teleconnection along and to the north of the subtropical jet provides a good indication of the surface sir temperature anomalies in the NH extratropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Chen TC, Murakami M (1988) The 30–50 day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region. Mon Weather Rev 116:892–906

    Article  Google Scholar 

  • Comeaux JL (1991) The origion and structure of the low-frequency modes. MS thesis Florida State University, Tallahassee, FL

  • Ding Q, Wang B (2007) Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J Clim 20:3751–3767

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Fukutomi Y, Yasunari T (1999) 10–25-day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. J Meteorol Soc Jpn 77:753–769

    Google Scholar 

  • Higgins RW, Schemm JKE, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13:793–820

    Article  Google Scholar 

  • Hsu HH, Weng CH, Wu CH (2004) Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J Clim 17:727–743

    Article  Google Scholar 

  • Jiang X, Lau NC (2008) Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J Clim 21:2664–2679

    Article  Google Scholar 

  • Jiang X, Waliser DE (2009) Two dominant subseasonal variability modes of the eastern Pacific ITCZ. Geophys Res Lett 36:L04704. doi:10.1029/2008GL036820

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Kawamura R, Murakami T, Wang B (1996) Tropical and mid-latitude 45-day perturbations over the western Pacific during the northern summer. J Meteorol Soc Jpn 74:867–890

    Google Scholar 

  • Kemball-Cook S, Wang B (2001) Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J Clim 14:2923–2942

    Article  Google Scholar 

  • Kikuchi K, Wang B (2009) Global perspective of the quasi-biweekly oscillation. J Clim 22:1340–1359

    Article  Google Scholar 

  • Kikuchi K, Wang B (2010) Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J Meteorol Soc Jpn 88(3):475–496

    Article  Google Scholar 

  • Knutson TR, Weickmann KM, Kutzbach JE (1986) Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during northern hemisphere summer. Mon Weather Rev 114:605–623

    Article  Google Scholar 

  • Krishnamurti TN, Sinha MC, Krishnamurti R, Oosterhof D, Comeaux J (1992) Angular momentum, length of day and monsoonal low frequency mode. J Meteorol Soc Jpn 70:131–166

    Google Scholar 

  • Lee JY, Wang B, Kang IS, Shukla J et al (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:267–283

    Article  Google Scholar 

  • Lee JY, Wang B, Ding Q, Ha KJ, Ahn JB, Kumar A, Stern B, Alves O (2011) How predictable is the northern hemisphere summer upper-tropospheric circulation? Clim Dyn 37:1189–1203

    Article  Google Scholar 

  • Liu AZ, Ting M, Wang H (1998) Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J Atmos Sci 55:2810–2832

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2006) The effect of the MJO on the North American monsoon. J Clim 19:333–343

    Article  Google Scholar 

  • Madden RA, Julien PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Mao JY, Chan JCL (2005) Intraseasonal variability of the South China Sea summer monsoon. J Clim 18:2388–2402

    Article  Google Scholar 

  • Mo KC (2000) Intraseasonal modulation of summer precipitation over North America. Mon Weather Rev 128:1490–1505

    Article  Google Scholar 

  • Mullen SL, Schmitz JT, Renno NO (1998) Intraseasonal variability of the summer monsoon over southeast Arizona. Mon Weather Rev 126:3016–3035

    Article  Google Scholar 

  • Newman M, Sardeshmukh PD (1998) The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J Atmos Sci 55:1336–1353

    Article  Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229

    Article  Google Scholar 

  • Schubert S, Wang H, Suarez M (2011) Warm season subseasonal variability and climate extremes in the Northern Hemisphere: the role of stationary Rossby waves. J Clim 24:4773–4792

    Article  Google Scholar 

  • Teng H, Wang B (2003) Interannual variations of the boreal summer intraseasonal oscillation in the Asia-Pacific region. J Clim 16:3572–3584

    Article  Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638

    Article  Google Scholar 

  • Wang B, Rui H (1990) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol Atmos Phys 44:43–61

    Article  Google Scholar 

  • Wang B, Xie X (1997) A model for the boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86

    Article  Google Scholar 

  • Wang B, Wu RG, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific-east Asian monsoon. J Clim 14:4073–4090

    Article  Google Scholar 

  • Wang B, Webster B, Kikuchi K, Yasunari T, Qi Y (2006) Boreal summer quasi-monthly oscillation in the global tropics. Clim Dyn 27:661–675

    Article  Google Scholar 

  • Wang B, Lee JY, Shukla J, Kang IS et al (2009) Advance and prospectus of seasonal prediction: assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117

    Article  Google Scholar 

  • Xie P, Yatagai A, Chen M, Hayasaka T, Fukushima Y, Liu C, Yang S (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626

    Article  Google Scholar 

  • Yang J, Wang B, Wang B (2008) Anticorrelated intensity change of the quasi-biweekly and 30–50-day oscillations over the South China Sea. Geophys Res Lett 35:L16702. doi:10.1029/2008GL034449

    Article  Google Scholar 

  • Yasunari T (1979) Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242

    Google Scholar 

  • Zhu B, Wang B (1993) The 30–60 day convection seesaw between the tropical Indian and western Pacific Oceans. J Atmos Sci 50:184–199

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Climate Dynamics Program of the National Science Foundation under award No AGS-1005599 and by GRL grant of the National Research Foundation (NRF) funded by Korean government (MEST) (No. 2011-0021927). ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server. This manuscript is SOEST Contribution No. 8677 and IPRC contribution No. 888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ja Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, JY., Wang, B., Ha, KJ. et al. Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Clim Dyn 40, 2761–2774 (2013). https://doi.org/10.1007/s00382-012-1394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1394-0

Keywords

Navigation