Skip to main content

Advertisement

Log in

Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120°E and between 20/30°N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1:515–519. doi:10.1038/ngeo248

    Article  Google Scholar 

  • Bordoni S, Schneider T (2010) Regime transitions of steady and time-dependent hadley circulations: comparison of axisymmetric and eddy-permitting simulations. J Atmos Sci 67:1643–1654

    Article  Google Scholar 

  • Chen TC (2003) Maintenance of summer monsoon circulations: a planetary-scale perspective. J Clim 16(12):2022–2037 doi:10.1175/1520-0442(2003)016<2022:MOSMCA>2.0.CO;2

    Google Scholar 

  • Chou C (2003) Land-sea heating contrast in an idealized Asian summer monsoon. Clim Dyn 21(1):11–25. doi:10.1007/s00382-003-0315-7

    Article  Google Scholar 

  • Dirmeyer PA (1998) Land-sea geometry and its effect on monsoon circulations. J Geophys Res 103(D10)(10):11555–11572. doi:10.1029/98JD00802

    Article  Google Scholar 

  • Duan AM, Wu GX (2008) Weakening trend in the atmospheric heating source over the Tibetan Plateau during recend decades. Part I: observations. J Clim 21:3150–3164

    Article  Google Scholar 

  • Duan AM, Wu GX (2009) Weakening trend in the atmospheric heating source over the Tibetan Plateau during recend decades. Part II: connection with climate warming. J Clim 22:4197–4212

    Article  Google Scholar 

  • Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res 111(19D19):D19110. doi:10.1029/2006JD007084

    Article  Google Scholar 

  • Fiorino M (2000) AMIP II sea surface temperature and sea ice concentration observations. PCMDI Report, Lawrence Livermore National Laboratory

  • Flohn H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. J Meteorol Soc Jpn 75:180–186

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteor Soc 106(449):447–662. doi:10.1002/qj.49710644905

    Article  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, Amsterdam, p 535

    Google Scholar 

  • Hsu CJ, Plumb RA (2000) Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J Atmos Sci 57(9):1255–1276. doi:10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2

    Article  Google Scholar 

  • Kucharski F, Bracco A, Barimalala R, Yoo JH (2010) Contribution of the east-west thermal heating contrast to the South Asian monsoon and consequences for its variability. Clim Dyn 37:721–735. doi:10.1007/s00382-010-0858-3

    Google Scholar 

  • Liang XY, Liu YM, Wu GX (2006) Roles of tropical and subtropical land-sea distribution and the Qinghai-Xizang Plateau in the formation of the Asian summer monsoon. Chin J Geophys-Ch 49(4):983–992 (in Chinese)

    Google Scholar 

  • Liu H, Wu GX (1997) Impacts of land surface on climate of July and onset of summer monsoon: a study with an AGCM plus SSiB. Adv Atmo- spheric Sci 14:289–308

    Article  Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeocl 183(3–4):223–245. doi:10.1016/S0031-0182(01)00488-6

    Article  Google Scholar 

  • Liu Y, Wu G, Ren R (2004) Relationship between the subtropical anticyclone and diabatic heating. J Clim 17(4):682–698. doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2

    Article  Google Scholar 

  • Liu Y, Hoskins B, Blackburn M (2007) Impact of the Tibetan orography and heating on the summer flow over Asia. J Meteorol Soc Jpn 85B:1–19. doi:10.2151/jmsj.85B.1

    Article  Google Scholar 

  • Ramage CS (1971) Monsoon meteorology. Academic Press, New York, p 296

    Google Scholar 

  • Schneider T, Bordoni S (2008) Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J Atmos Sci 65:915–934

    Article  Google Scholar 

  • Wallace JM, Hobbs PV (1977) Atmospheric Science: an introductory survey. Academic Press, New York

  • Wu G, Liu Y (2000) Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I: Thermal adaptation and overshooting. Chin J Atmos Sci 24(4):433–446 (in Chinese). doi:10.3878/j.issn.1006-9895.2000.04.01

  • Wu G, Liu Y (2003) Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett 30(5):1201. doi:10.1029/2002GL016209

    Article  Google Scholar 

  • Wu T, Liu P, Wang Z, Liu Y, Yu R, Wu G (2003) The performance of atmospheric component model R42L9 of GOALS/LASG. Adv Atmos Sci 20(5):726–742. doi:10.1007/BF02915398

    Article  Google Scholar 

  • Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J Hydrometeorl 8(4):770–789. doi:10.1175/JHM609.1

    Article  Google Scholar 

  • Wu GX, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X (2009) Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys 27(9):3631–3644. doi:10.5194/angeo-27-3631-2009

    Article  Google Scholar 

  • Xu Z, Fu C, Qian Y (2009) Relative roles of land-sea distribution and orography in Asian monsoon intensity. J Atmos Sci 66(9):2714–2729

    Article  Google Scholar 

  • Xue Y, Sellers PJ, Kinter JJ, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364

    Article  Google Scholar 

  • Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 513–549. doi:10.1007/3-540-37722-0_13

  • Yang K, Guo XF, He J, Qin J, Koike T (2011) On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J Clim 24:1525–1541

    Article  Google Scholar 

  • Ye DZ, Wu GX (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys 67(1–4):181–198. doi:10.1007/BF01277509

    Article  Google Scholar 

  • Yeh TC, Lo SW, Chu PC (1957) The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor Sinica 28:108–121 (in Chinese)

    Google Scholar 

  • Young JA (1987) Physics of monsoon: the current view. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, Washington D C, pp 211–243

Download references

Acknowledgments

This study was jointly supported by the MOST Programme (2010CB950403 and 2012CB417200), and the NSFC Projects (40925015, 40875034). BD was supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate). We thank the anonymous reviewers for their valuable suggestions on the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Liu.

Additional information

This paper is a contribution to the special issue on Global Monsoon Climate, a product of the Global Monsoon Working Group of the Past Global Changes (PAGES) project, coordinated by Pinxian Wang, Bin Wang, and Thorsten Kiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Liu, Y., Dong, B. et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn 39, 1169–1181 (2012). https://doi.org/10.1007/s00382-012-1334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1334-z

Keywords

Navigation