Skip to main content
Log in

Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Cloud cover currently represents the single greatest source of uncertainty in General Circulation Models. Stable carbon isotope ratios (δ13C) from tree-rings, in areas of low moisture stress, are likely to be primarily controlled by photosynthetically active radiation (PAR), and therefore should provide a proxy record for cloud cover or sunshine; indeed this association has previously been demonstrated experimentally for Scots pine in Fennoscandia, with sunlight explaining ca 90% of the variance in photosynthesis and temperature only ca 4%. We present a statistically verifiable 1011-year reconstruction of cloud cover from a well replicated, annually-resolved δ13C record from Forfjord in coastal northwestern Norway. This reconstruction exhibits considerable variability in cloud cover over the past millennium, including extended sunny periods during the cool seventeenth and eighteenth centuries and warm cloudy periods during the eleventh, early fifteenth and twentieth centuries. We find that while a generally positive relationship persists between sunshine and temperature at high-frequency, at lower (multi-decadal) frequencies the relationship is more often a negative one, with cool periods being sunny (most notably the Little Ice Age period from 1600 to 1750 CE) and warm periods more cloudy (e.g. the mediaeval and the twentieth century). We conclude that these long-term changes may be caused by changes in the dominant circulation mode, likely to be associated with the Arctic Oscillation. There is also strong circumstantial evidence that prolonged periods of high summer cloud cover, with low PAR and probably high precipitation, may be in part responsible for major European famines caused by crop failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aberth J (2001) From the brink of the apocalypse. Routledge, London

    Google Scholar 

  • Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17:2095–2112. doi:10.1111/j.1365-2486.2010.02373.x

    Article  Google Scholar 

  • Bale RJ, Robertson I, Salzer MW, Loader NJ, Leavitt SW, Gagen M, Harlan TP, McCarroll D (2011) An annually resolved bristlecone pine carbon isotope chronology for the last millennium. Quat Res 76:22–29. doi:10.1016/j.yqres.2011.1005.1004

    Article  Google Scholar 

  • Biondi F, Hartsough PC, Estrada IG (2005) Daily weather and tree growth at the tropical treeline of North America. Arct Antarct Alp Res 37:16–24

    Article  Google Scholar 

  • Boettger T, Haupt M, Knöller K, Weise M, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of d13C, d18O, and nonexchangeable d2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612

    Article  Google Scholar 

  • Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32:L20806. doi:20810.21029/22005GL023851

    Article  Google Scholar 

  • Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall AE, Hallegatte S, Holland MK, Ingram WJ, Randall DA, Soden BJ, Tselioudis G, Webb WJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  • Briffa KR, Jones PD (1989) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152

    Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Article  Google Scholar 

  • Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. Holocene 17:821–828

    Article  Google Scholar 

  • Campbell R, McCarroll D, Robertson I, Loader NJ, Grudd H, Gunnarson BE (2011) Blue intensity in Pinus sylvestris tree rings: a manual for a new palaeoclimate proxy. Tree Ring Res 67:127–134

    Article  Google Scholar 

  • Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325:460–464

    Article  Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill A, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237

    Article  Google Scholar 

  • Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? Ambio 29:51–54

    Google Scholar 

  • Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the epast millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70:188–197

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  Google Scholar 

  • Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711. doi:10.1029/2004GL021236

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  • Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709. doi:10.1029/2007GL030571

    Article  Google Scholar 

  • Freyer HD, Belacy N (1983) 13C/12C in Northern Hemisphere trees during the past 500 years—anthropogenic impacts and climatic superpositions. J Geophys Res 88:6844–6852

    Article  Google Scholar 

  • Gagen MH, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446

    Article  Google Scholar 

  • Gagen MH, Zorita E, McCarroll D, Young GHF, Grudd H, Jalkanen R, Loader NJ, Robertson I, Kirchhefer AJ (2011) Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophys Res Lett 38:L05701. doi:05710.01029/02010GL046216

    Article  Google Scholar 

  • Grudd H (2008) Torneträsk tree-ring width and density AD 500–2004: A test of climate sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857

    Article  Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–666

    Article  Google Scholar 

  • Hari P, Hallman E, Salminen R, Vapaavuori E (1981) Evaluation of factors controlling net photosynthetic rate in Scots pine seedlings under field conditions without water stress. Oecologia 48:186–189

    Article  Google Scholar 

  • Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Meriläinen J, Eronen M (2009) Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Ann Geophys 7:1097–1111

    Article  Google Scholar 

  • Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480

    Article  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi:10.1029/2003RG000143

  • Jordan WC (1996) The great famine. Princeton University press, Princeton

    Google Scholar 

  • Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree-rings of Scots pine (Pinus sylvestris L.) in coastal northern Norway. Holocene 11:41–52

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kress A, Young GHF, Saurer M, Loader NJ, Siegwolf RTW, McCarroll D (2009) Stable isotope coherence in the earlywood and latewood of tree line conifers. Chem Geol 268:52–57

    Article  Google Scholar 

  • Lamb HH (1963) What can we find about the trend of our climate? Weather 18:194–216

    Article  Google Scholar 

  • Lamb HH (1995) Climate history and the modern world, 2nd edn. Routledge, London

    Google Scholar 

  • Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31:263–281. doi:10.1007/s00382-007-0351-9

    Article  Google Scholar 

  • Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141

    Article  Google Scholar 

  • Linderholm HW, Gunnarson BE (2005) Summer temperature variability in central Scandinavia during the last 3600 years. Geografiska Annaler 87A:231–241

    Article  Google Scholar 

  • Lindholm M, Jalkanen R, Salminen H, Aalto T, Ogurtsov M (2010) The height-increment record of summer temperature extended over the last millennium in Fennoscandia. Holocene 21:319–326

    Article  Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to a-cellulose. Chem Geol 136:313–317

    Article  Google Scholar 

  • Loader NJ, Robertson I, McCarroll D (2003) Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr Palaeoclimatol Palaoecol 196:395–407

    Article  Google Scholar 

  • Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M, Robertson I, Wilson R, Froyd CA, McCarroll D (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol 252:62–71

    Article  Google Scholar 

  • Loader NJ, Helle G, Los S, Lehmkuhl F, Schleser GH (2010) Twentieth-century summer temperature variability in the southern Altai Mountains: a carbon and oxygen isotope study of tree-rings. Holocene 20:1149–1156. doi:1110.1177/0959683610369507

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820. doi:10.1029/2003GLO17814

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • McCarroll D, Pawellek F (1998) Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal-strength. Holocene 8:675–684

    Article  Google Scholar 

  • McCarroll D, Pawellek F (2001) Stable carbon isotopes ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526

    Article  Google Scholar 

  • McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL (2002) Blue reflectance provides a surrogate for latewood density of high-latitude Pine tree rings. Arct Antarct Alp Res 34:450–453

    Article  Google Scholar 

  • McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen MH, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O (2003) Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene 13:829–838

    Article  Google Scholar 

  • McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Ac 73:1539–1547

    Article  Google Scholar 

  • McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2010) Erratum to “Correction of tree ringstable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere”, Geochimica et Cosmochimica Acta 73, 1539–1547. Geochim Cosmochim Ac 74:3040

    Article  Google Scholar 

  • McCarroll D, Tuovinen M, Campbell R, Gagen M, Grudd H, Jalkanen R, Loader NJ, Robertson I (2011a) A critical evaluation of multi-proxy dendroclimatology in northern Finland. J Quat Sci 26:7–14

    Article  Google Scholar 

  • McCarroll D, Millennium Project Team (2011b) European climate of the last one thousand years: final report of the Millennium project (in review)

  • NRC (2006) Surface Temperature reconstructions for the last 2, 000 years. The National Academies, Washington

    Google Scholar 

  • Osborn TJ, Briffa KR, Jones PD (1997) Ajusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15:89–99

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of a-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82

    Article  Google Scholar 

  • Robertson I, Lucy D, Baxter L, Pollard AM, Aykroyd RG, Barker AC, Carter AHC, Switsur VR, Waterhouse JS (1999) A kernel-based Bayesian approach to climatic reconstructio. Holocene 9:495–500

    Article  Google Scholar 

  • Rogers JC, McHugh MJ (2002) On the seperability of the North Atlantic oscillation and Arctic oscillation. Clim Dyn 19:599–608

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  Google Scholar 

  • Ruddiman WF (2005) Plows, plagues and petroleum: how humans took control of climate. Princeton University Press, Princeton

    Google Scholar 

  • Saurer M, Siegwolf R, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol 10:2109–2120

    Article  Google Scholar 

  • Seftigen K, Linderholm HW, Loader NJ, Liu Y, Young GHF (2011) The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chem Geol 286:84–93. doi:10.1016/j.chemgeo.2011.1004.1006

    Google Scholar 

  • Sidorova OV, Siegwolf RTW, Saurer M, Naurzbaev MM, Shashkin AV, Vaganov EA (2010) Spatial patterrns of climate changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob Change Biol 16:1003–1018

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Switsur VR, Waterhouse JS, Field EM, Carter AHC, Loader NJ (1995) Stable isotope studies in tree rings from oak—techniques and some preliminary results. Paläoklimaforschung 15:129–140

    Google Scholar 

  • Thompson DWJ (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling DR, Klein Tank A, Parker DE, Rahimzadeh F, Renwick JA, Rusticucci M, Soden BJ, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus 53B:593–611

    Google Scholar 

  • Treydte KS, Frank DC, Saurer M, Helle G, Schleser GH, Esper J (2009) Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochim Cosmochim Ac 73:4635–4647

    Article  Google Scholar 

  • Troyer DA, Fernandes G (2000) Caloric intake: sources, deficiencies, and excess—an overview. In: Gershwin ME, German JB, Keen CL (eds) Nutrition and immunology: principles and practice. Humana Press, Totowa, p 505

    Google Scholar 

  • Tuomenvirta H, Drebs A, Førland E, Tveito OE, Alexandersson H, Laursen EV, Jónsson T (2001) Nordklim data set 1.0—description and illustrations. In: Report 08/01. Norwegian Meteorological Institute, Oslo

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Springer, Berlin

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Sitzungsberichte der Heidelberger Akademie der Wissenschaften 3:111–135

    Google Scholar 

  • Wallace JM (2000) North Atlantic oscillation/annular mode: two paradigms—one phenomenon. Q J R Meteorol Soc 126:791–805. doi:710.1002/qj.49712656402

    Article  Google Scholar 

  • Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004) Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23:803–810

    Article  Google Scholar 

  • Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38

    Article  Google Scholar 

  • Wheeler D, Garcia-Herrera R, Wilkinson CW, Ward C (2010) Atmospheric circulation and storminess derived from Royal Navy logbook: 1685 to 1750. Clim Change 101:257–280

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dedroclimatology and hydrometerorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wils T, Robertson I, Eshetu Z, Koprowski M, Sass-Klaassen U, Touchan R, Loader NJ (2010) Towards a reconstruction of Blue Nile baseflow from Ethiopian tree rings. Holocene 20:837–848

    Article  Google Scholar 

  • Young GHF, McCarroll D, Loader NJ, Kirchhefer AJ (2010) A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20:315–324

    Article  Google Scholar 

  • Young GHF, Demmler JC, Gunnarson BE, Kirchhefer AJ, Loader NJ, McCarroll D (2011) Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Glob Biogeochem Cycle GB2020. doi:10.1029/2010GB003913

Download references

Acknowledgments

This work was funded by the European Union Millennium project (017008) and UK NERC NE/B501504 (NJL) and NER/S/A/2004/12466 (GHFY). Additional support was provided by the Climate Change Consortium for Wales (C3W). We thank Roderick Bale, Iain Robertson, Ewan Woodley and Eduardo Zorita for helpful discussions, and three anonymous reviewers for their helpful and insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles H. F. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, G.H.F., McCarroll, D., Loader, N.J. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim Dyn 39, 495–507 (2012). https://doi.org/10.1007/s00382-011-1246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1246-3

Keywords

Navigation