Skip to main content

Advertisement

Log in

Delayed ENSO impact on spring precipitation over North/Atlantic European region

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The delayed impact of winter sea-surface temperature (SST) anomalies in tropical Pacific on spring precipitation over the North Atlantic/European (NAE) region is examined using both measured and modeled data for the period 1901–2002. In an AMIP-type Atmospheric General Circulation Model (AGCM) ensemble, the observed delayed spring precipitation response in Europe to winter ENSO-related SST anomalies is well reproduced. A series of targeted AGCM/coupled GCM experiments are performed to further investigate the mechanisms for this delayed influence. It is found that late winter ENSO SST anomalies lead to the well-documented Rossby wave train arching from the Pacific into the Atlantic region. A positive (negative) ENSO event leads to a quasi-barotropic trough (ridge) in the North Atlantic region. The resulting wind and cloud changes cause anomalies in the surface heat fluxes that result in negative (positive) SST anomalies in the central North Atlantic and anomalies of the opposite sign further to the south. The SST anomalies persist into spring and the atmospheric response to these anomalies is an extension of the ENSO-induced trough (ridge) into the European region, leading to enhanced (reduced) moisture flux and low-level convergence (divergence) and thus positive (negative) precipitation anomalies. Although the signal is overall relatively weak (correlation coefficients of European spring rainfall with winter ENSO SSTs of about 0.3), a proper representation of the outlined mechanism in seasonal forecasting systems may lead to improved seasonal predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. University of East Anglia, Norwich, UK.

  2. Hadley Centre for Climate Prediction and Research, UK Meteorological Office, Exeter, UK.

  3. Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.cdc.noaa.gov).

References

  • Basnett T, Parker D (1997) Development of the global mean sea level pressure data set GMSLP2, Climate Research Technical Note, 79, Hadley Centre, Met Office, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK

  • Bracco A, Kucharski F, Kallummal R, Molteni F (2004) Internal variability, external forcing and climate trends in multidecadal AGCM ensembles. Clim Dyn 23:659–678

    Article  Google Scholar 

  • Branković Č, Palmer TN (1997) Atmospheric seasonal predictability and estimates of ensemble size. Mon Weather Rev 125:859–874

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño-Southern oscillation on European climate. Rev Geophys 45:RG3003. doi:10.1029/2006RG000199

  • Chang P, Saravanan R, Ji L (2003) Tropical Atlantic seasonal predictability: the roles of El Nino remote influence and thermodynamic air-sea feedback. Geophys Res Lett 30:1501. doi:10.1029/2002GL016119

    Article  Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST anomalies on the atmospheric circulation. Geophys Res Lett 26:2969–2972

    Article  Google Scholar 

  • Czaja A, Van der Vaart P, Marshall J (2002) A diagnostic study of the role of remote forcing in tropical Atlantic variability. J Clim 15:3280–3290

    Article  Google Scholar 

  • Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Fraedrich K (1994) An ENSO impact on Europe? A review. Tellus 46A:541–552

    Google Scholar 

  • Fraedrich K, Müller K (1992) Climate anomalies associated with ENSO extremes. Int J Climatol 12:25–31

    Article  Google Scholar 

  • García-Serrano J, Rodríguez-Fonseca B, Camara A, Bladé I, Zurita P (2010) Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO. Clim Dyn doi:10.1007/s00382-010-0968-y

  • Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Amer Met Soc 73:1962–1970

    Article  Google Scholar 

  • Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern Oscillation. J Clim 5:577–593

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Seager R, Molteni F (2005) Tropical Pacific-driven decadel energy transport variability. J Clim 18:2037–2051

    Article  Google Scholar 

  • Herceg Bulić I (2010) The sensitivity of climate response to the wintertime Niño3.4 sea surface temperature anomalies of 1855–2002. Int J Climatol, n/a. doi:10.1002/joc.2255

  • Herceg Bulić I, Branković Č (2007) ENSO forcing of the Northern Hemisphere climate in a large ensemble model simulations. Clim Dyn 28:231–254

    Article  Google Scholar 

  • Herceg Bulić I, Branković Č, Kucharski F (2011) Winter ENSO teleconnections in a warmer climate. Clim Dyn doi:10.1007/s00382-010-0987-8

  • Hu Z–Z, Huang B (2007) The predictive skill and the most predictable pattern in the tropical Atlantic: the effect of ENSO. Mon Weather Rev 135(5):1786–1806

    Article  Google Scholar 

  • Jin EK, Kinter JL, Wang B, Park C-K, Kang I-S, Kirtman BP, Kug J-S, Kumar A, Luo J–J, Schemm J (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664. doi:10.1007/s00382-008-0397-3

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note, NCAR/TN420 + STR, National Center for Atmospheric Research, Boulder, CO, pp 152. (Available from NCAR, Boulder, CO 80307)

  • Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090

    Article  Google Scholar 

  • Knippertz P, Ulbrich U, Marques F, Corte-Real J (2003) Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European–North African rainfall. Int J Climatol 23:1293–1311. doi:10.1002/joc.944

    Article  Google Scholar 

  • Kucharski F, Molteni F (2003) On non-linearities in a forced North Atlantic Oscillation. Clim Dyn 21:677–687

    Article  Google Scholar 

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. QJR Meteorol Soc 135:569–579. doi:10.1002/qj.406

    Article  Google Scholar 

  • Kumar A, Hoerling MP (2003) The nature and causes for the delayed atmospheric response to El Niño. J Clim 16:1391–1403

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Blade I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM responses to extratropical SST anomalies: synthesis and evaluation. J Climate 15:2233–2256

    Article  Google Scholar 

  • Lau N-C, Nath M (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2056

    Article  Google Scholar 

  • Lau N-C, Leetmaa A, Nath MJ, Wang H-L (2005) Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim 18:2922–2942

    Article  Google Scholar 

  • Mariotti A, Zeng N, Lau K-M (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29(12). doi:10.1029/2001GL014248

  • Merkel U, Latif M (2002) A high resolution AGCM study of the El Niño impact on the North Atlantic/European sector. Geophys Res Lett. 29(9). doi:10.1029/2001GL013726

  • Mitchell TD, TR Carter, PD Jones, M Hulme, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre for Climate Change Research Working Paper 30. (Available online at http://www.tyndall.ac.uk/sites/default/files/wp55.pdf)

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi–decadal experiments. Clim Dyn 20:175–191

    Google Scholar 

  • Moron V, Ward MN (1998) ENSO teleconnections with climate variability in the European and African sector. Weather 53:287–295

    Article  Google Scholar 

  • Müller W, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI–OM. Clim Dyn 31:533–549

    Article  Google Scholar 

  • New M, Hulme M, Jones PD (2000) Representing twentieth century space-time climate variability. Part 2: development of 1901-96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Nieves Lorenzo M, Taboada JJ, Iglesias I, Gómez-Gesteira M (2010) Predictability of the spring rainfall in Northwestern Iberian Peninsula from sea surfaces temperature of ENSO areas. Clim Change. doi:10.1007/s10584-010-9991-6

  • Park S (2004) Remote ENSO influence on Mediterranean sky conditions during late summer and autumn: evidence for a slowly evolving atmospheric bridge. QJR Meteorol Soc 130:2409–2422

    Article  Google Scholar 

  • Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12:1393–1408

    Article  Google Scholar 

  • Pozo-Vázquez D, Gámiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Díez Y (2005) El Niño–southern oscillation events and associated European winter precipitation anomalies. Int J Climatol 25:17–31. doi:10.1002/joc.1097

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice, and night marine air temperature since late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rimbu N, Treut HL, Janicot S, Boroneant C, Laurent C (2001) Decadal precipitation variability over Europe and its relation with surface atmospheric circulation and sea surface temperature. QJR Meteorol Soc 127: 315–329. doi:10.1002/qj.49712757204

    Google Scholar 

  • Rodó X, Baert E, Comin FA (1997) Variations in seasonal rainfall in southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Nino Southern Oscillation. Clim Dyn 13:275–284

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño–Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Shaman J, Tziperman E (2011) An atmospheric teleconnection linking ENSO and southwestern European precipitation. J Clim 24:124–139. doi:10.1175/2010JCLI3590.1

    Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477

    Article  Google Scholar 

  • Su H, Neelin JD, Meyerson JE (2003) Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J Clim 16:1283–1301

    Article  Google Scholar 

  • Su H, Neelin JD, Meyerson JE (2005) Mechanisms for lagged atmospheric response to ENSO SST forcing. J Clim 18:4195–4215

    Article  Google Scholar 

  • Ting M, Peng S (1995) Dynamics of early and middle winter atmospheric responses to northwest Atlantic SST anomalies. J Clim 8:2239–2254

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modelling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • van Loon H, Madden RA (1981) The southern oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon Weather Rev 109:1150–1162

    Article  Google Scholar 

  • van Oldenborgh GJ, Burgers G, Klein Tank A (2000) On the El-Niño teleconnection to spring precipitation in Europe. Int J Climatol 20:565–574

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wen N, Liu ZY, Liu QY (2010) Observed atmospheric responses to global SST variability modes: a unified assessment using GEFA. J Clim 23:1739–1759

    Article  Google Scholar 

  • Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index. Int J Climatol 28: 995–1006. doi:10.1002/joc.1601

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the suggestion of Mirko Orlić about delayed ENSO impact on precipitation over Europe. We would like to thank three anonymous reviewers for their constructive and helpful comments. This work has been supported by the Ministry of Science, Educational and Sports of the Republic of Croatia (grants No. 119-1193086-1323). Ivana Herceg Bulić also acknowledges support by the European Science Foundation (ESF) activity entitled Mediterranean Climate Variability and Predictability (MedCLIVAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Herceg Bulić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herceg Bulić, I., Kucharski, F. Delayed ENSO impact on spring precipitation over North/Atlantic European region. Clim Dyn 38, 2593–2612 (2012). https://doi.org/10.1007/s00382-011-1151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1151-9

Keywords

Navigation