Skip to main content

Advertisement

Log in

Global and regional coupled climate sensitivity to the parameterization of rainfall interception

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A coupled land–atmosphere model is used to explore the impact of seven commonly used canopy rainfall interception schemes on the simulated climate. Multiple 30-year simulations are conducted for each of the seven methods and results are analyzed in terms of the mean climatology and the probability density functions (PDFs) of key variables based on daily data. Results show that the method used for canopy interception strongly affects how rainfall is partitioned between canopy evaporation and throughfall. However, the impact on total evaporation is much smaller, and the impact on rainfall and air temperature is negligible. Similarly, the PDFs of canopy evaporation and transpiration for six selected regions are strongly affected by the method used for canopy interception, but the impact on total evaporation, temperature and precipitation is negligible. Our results show that the parameterization of rainfall interception is important to the surface hydrometeorology, but the seven interception parameterizations examined here do not cause a statistically significant impact on the climate of the coupled model. We suggest that broad scale climatological differences between coupled climate models are not likely the result of how interception is parameterized. This conclusion is inconsistent with inferences derived from earlier uncoupled simulations, or simulations using very simplified climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz G, Leuning R, Clark M, Pitman AJ (2008) Evaluating the performance of land surface models. J Clim 21:5468–5481. doi:10.1175/2008JCLI2378.1

    Article  Google Scholar 

  • Chouinard C, Beland M, McFarlane N (1986) A simple gravity wave drag parameterization for use in medium-range weather forecast models. Atmos Ocean 24:91–110

    Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. Tech Rep NCAR/TN-275+STR, National Center for Atmospheric Research, Boulder, CO, USA

  • Dolman AJ, Gregory D (1992) The parameterization of rainfall interception in GCMs. Quart J R Meteorol Soc 118:455–467

    Article  Google Scholar 

  • Entekhabi D, Eagleson PS (1989) Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J Clim 2:816–831

    Article  Google Scholar 

  • Fels SB, Schwarzkopf MD (1981) An efficient, accurate algorithm for calculating CO2 15 micron band cooling rates. J Geophys Res 86:1205–1232

    Article  Google Scholar 

  • Findell KL, Knutson TR, Milly PCD (2006) Weak simulated extratropical responses to complete tropical deforestation. J Clim 19:2835–2850

    Article  Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270. doi:10.1016/j.jhydrol.2003.09.029

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model. Tech Rep 60, CSIRO Atmospheric Research, Aspendale, VIC

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118:1483–1506

    Article  Google Scholar 

  • Hahmann AN (2003) Representing spatial subgrid-scale precipitation variability in a GCM. J Hydrometeorol 4:891–900. doi:10.1175/1525-7541(2003)004B0891:RSSPVIC2.0.CO;2

    Article  Google Scholar 

  • Houghton JT, Meiro Filho LG, Callender BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: the science of climate change. Cambridge University Press, UK, p 572

    Google Scholar 

  • Kergoat L (1998) A model for hydrological equilibrium of leaf area index on a global scale. J Hydrol 212/213:268–286. doi:10.1016/S0022-1694(98)00211-X

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman AJ, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  Google Scholar 

  • Kowalczyk EA, Wang YP, Law RM, Davies HL, McGregor JL, Abramowitz G (2006) The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model. Research paper 013, CSIRO Marine and Atmospheric Research paper 013, Aspendale, VIC, 37 pp

  • Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction. J Hydrometeorol 8:862–880. doi:10.1175/JHM596.1

    Article  Google Scholar 

  • Leuning R, Kelliher FM, de Pury DGG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Article  Google Scholar 

  • Massman WJ (1980) Water storage on forest foliage, a general model. Water Resour Res 16:210–216

    Article  Google Scholar 

  • McGregor JL (1993) Economical determination of departure points for semi-Lagrangian models. Mon Weather Rev 121:221–230

    Article  Google Scholar 

  • Phipps SJ (2006) The CSIRO Mk3L climate system model. Technical Report No. 3, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia, 236 pp. ISBN 1-921197-03-X

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim 23:479–510

    Article  Google Scholar 

  • Pitman AJ, Henderson-Sellers A, Yang Y-Z (1990) Sensitivity of the land surface to sub-grid scale precipitation in AGCMs. Nature 346:734

    Article  Google Scholar 

  • Pitman AJ, Yang Z-L, Henderson-Sellers A (1993) Sub-grid scale precipitation in AGCMS: reassessing the land surface sensitivity using a single column model. Clim Dyn 9:33–41

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Raupach MR, Finkele K, Zhang L (1997) SCAM (soil-canopy-atmosphere model): description and comparison with field data. Tech Rep 132, CSIRO Centre for Env. Mechanics. Tech. Rep. 132

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rotstayn LD (1997) A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: description and evaluation of the microphysical processes. Quart J R Meteorol Soc 123:1227–1282

    Google Scholar 

  • Rotstayn LD (1998) A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. II: comparison of modelled and observed climatological fields. Quart J R Meteorol Soc 124:389–415

    Google Scholar 

  • Rutter AJ, Kershaw KA, Robins PC, Morton AJ (1971) A predictive model of rainfall interception in forests, I. Derivation of the model from observations in a plantation of Corsican pine. Agric Meteorol 9:367–384

    Article  Google Scholar 

  • Rutter AJ, Kershaw KA, Robins PC, Morton AJ (1972) A predictive model of rainfall interception in forest. Agric Meteorol 9:857–861

    Google Scholar 

  • Schwarzkopf MD, Fels SB (1985) Improvements to the algorithm for computing CO2 transmissivities and cooling rates. J Geophys Res 90(D6):10541–10550. doi:10.1029/JD090iD06p10541

    Article  Google Scholar 

  • Scott R, Koster R, Entekhabi D, Suarez M (1995) Effect of a canopy interception reservoir on hydrological persistence in a general circulation model. J Clim 8:1917–1922

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modelling the exchanges of energy, water and carbon between continents and the atmosphere. Science 275:502–509

    Article  Google Scholar 

  • Shuttleworth WJ (1988) Macrohydrology—the new challenge for process hydrology. J Hydrol 100:31–56. doi:10.1016/0022-1694(88)90180-1

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  • Wang GL, Eltahir EAB (2000) Impact of rainfall subgrid variability on modeling the biosphere–atmosphere system. J Clim 13:2887–2899

    Article  Google Scholar 

  • Wang YP, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I: model description. Agric For Meteorol 91:89–111

    Article  Google Scholar 

  • Wang YP, Leuning R, Cleugh HA, Coppin PA (2001) Parameter estimation in surface exchange models using non-linear inversion: how many parameters can we estimate and which measurements are most useful? Glob Chang Biol 7:495–510. doi:10.1046/j.1365-2486.2001.00434.x

    Article  Google Scholar 

  • Wang DG, Wang GL, Anagnostou EN (2005) Use of satellite-based precipitation observation in improving the parameterization of canopy hydrological processes in land surface models. J Hydrometeorol 6:745–763. doi:10.1175/JHM438.1

    Article  Google Scholar 

  • Wang DG, Wang GL, Anagnostou EN (2007a) Evaluation of canopy interception schemes in land surface models. J Hydrol 347:308–318. doi:10.1016/j.jhydrol.2007.09.041

    Article  Google Scholar 

  • Wang YP, Baldocchi D, Leuning R, Falge E, Vesala T (2007b) Estimating parameters in a land surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Glob Chang Biol 13:652–670. doi:10.1111/j.1365-2486.2006.01225.x

    Article  Google Scholar 

  • Wang DG, Wang GL, Anagnostou EN (2008) Impact of sub-grid variability of precipitation and canopy water storage on hydrological processes in a coupled land-atmosphere scheme. Clim Dyn 32:649–662. doi:10.1007/s00382-008-0435-1

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr D Wang for providing the code for their interception schemes as well as two dedicated anonymous reviewers who greatly improved this paper. A. J. Pitman acknowledges support by the Australian Research Council (LP0774996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Pitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Pitman, A.J., Phipps, S.J. et al. Global and regional coupled climate sensitivity to the parameterization of rainfall interception. Clim Dyn 37, 171–186 (2011). https://doi.org/10.1007/s00382-010-0862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0862-7

Keywords

Navigation