Skip to main content
Log in

An ENSO stability analysis. Part I: results from a hybrid coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we use the Bjerknes stability (BJ) index as a tool to investigate overall El Niño-Southern Oscillation (ENSO) stability in a hybrid-coupled model (HCM) with various atmosphere and ocean background states. This HCM shows that ENSO growth rates as measured by the BJ index and linear growth rates estimated directly with a time series of the Niño 3.4 indices from the coupled model simulations exhibit similar dependence on background states, coupling strength, and thermodynamic damping intensity. That is, the BJ index and linear growth rates increase with a decrease in the intensity of the background wind, an increase in coupling strength, or a decrease in the intensity of thermodynamic damping, although the BJ index tends to overestimate the growth rate. A detailed analysis of the components of the BJ index formula suggests the importance of model climatological background states and oceanic dynamic parameters in determining ENSO stability. We conclude that the BJ index may serve as a useful tool for qualitatively evaluating the overall ENSO stability in coupled models or in observations without a detailed eigen-analysis that is difficult to perform in models more complex than relatively simple models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn. doi:10.1007/s00382-006-0119-7

  • An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO J Clim 21:3680–3686

    Google Scholar 

  • An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor Appl Climatol 92:29–40

    Article  Google Scholar 

  • An S-I, Jin F-F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:1573–2576

    Article  Google Scholar 

  • An S-I, Jin F-F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An S-I, Jin F-F, Kang IS (1999) The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J Meteorol Soc Jpn 77:1151–1160

    Google Scholar 

  • Barnett TP, Graham N, Pazan S, White W, Latif M, Flügel M (1993) ENSO and ENSO-related predictability. Part I: prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J Clim 6:1545–1566

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Cane MA, Sarachik ES (1977) Forced baroclinic ocean models, Part II: The linear equatorial bounded case. J Mar Res 35:395–432

    Google Scholar 

  • Cane MA, Münnich M, Zebiak SF (1990) A study of self-excited oscillations of the tropical ocean-atmosphere system. Part I: linear analysis. J Atmos Sci 47:1562–1577

    Article  Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298

    Article  Google Scholar 

  • Clarke AJ, Lebedev A (1996) Long-term changes in equatorial Pacific trade winds. J Clim 9:1020–1029

    Article  Google Scholar 

  • Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Niño changing? Sci 288:1997–2002

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2001) A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J Clim 14:3086–3101

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J Atmos Sci 43:606–630

    Article  Google Scholar 

  • Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Jin F-F, An S-I (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2689–2992

    Article  Google Scholar 

  • Jin F-F, Neelin JD (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view part I: numerical results. J Atmos Sci 50:3477–3502

    Article  Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index of ENSO. Geophys Res Lett 33:L23708. doi:10.1029/2006GL027221

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Legler DM, O’Brien JJ (1985) Atlas of tropical Pacific wind-stress climatology: 1971–1980. Florida State University, Tallahassee, p 187

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Pap. 13. US Government Printing Office, Washington, DC, p 173

    Google Scholar 

  • Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3. US Department of Commerce, Washington, DC, p 113

    Google Scholar 

  • MacMynowski DG, Tziperman E (2008) Factors affecting ENSO’s period. J Atmos Sci 65:1570–1586

    Article  Google Scholar 

  • Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027

    Article  Google Scholar 

  • Münnich M, Cane MA, Zebiak SE (1991) A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: nonlinear cases. J Atmos Sci 48:1238–1248

    Article  Google Scholar 

  • Neelin JD (1990) A hybrid coupled general circulation model for El Niño studies. J Atmos Sci 47:674–693

    Article  Google Scholar 

  • Neelin JD, Dijkstra HA (1995) Ocean-atmosphere interaction and the tropical climatology. Part I: the dangers of flux correction. J Clim 8:1325–1342

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Shin S-I, Liu Z, Shields C (2003) Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:L2198. doi:10.1029/2003GL018553

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 Manual. NOAA/Geophysical fluid dynamics laboratory, 668 pp

  • Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of the tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  • Philander SGH (1981) The response of equatorial oceans to a relaxation of the trade winds. J Phys Oceanogr 11:176–189

    Article  Google Scholar 

  • Philander SGH, Pacanowski RC (1986) A model of the seasonal cycle in the tropical Atlantic Ocean. J Geophys Res 91:14192–14206

    Google Scholar 

  • Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interaction in the tropics. J Atmos Sci 41:604–613

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Syu H-H, Neelin JD, Gutzler D (1995) Seasonal and interannual variability in a hybrid coupled GCM. J Clim 8:2121–2143

    Article  Google Scholar 

  • Tang Y (2002) Hybrid coupled models of the tropical Pacific: I interanuual variability. Clim Dyn 19:331–342. doi:10.1007/s00382-002-0230-3

    Article  Google Scholar 

  • Timmermann A (2001) Changes of ENSO stability due to greenhouse warming. Geophys Res Lett 28:2061–2064

    Article  Google Scholar 

  • Timmermann A, Justino F, Jin F-F, Krebs U, Goose H (2004) Surface temperature control in the North and tropical Pacific during the last glacial maximum. Clim Dyn 23:353–370. doi:10.1007/s00382-004-0434-9

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-southern oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by NSF grants ATM 0652145 and ATM 0650552 and NOAA grants GC01-229. The authors thank Drs. Eric Guilyardi, Axel Timmermann and Shang-Ping Xie and anonymous reviewers for their valuable comments and May Izumi for her careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.T., Jin, FF. An ENSO stability analysis. Part I: results from a hybrid coupled model. Clim Dyn 36, 1593–1607 (2011). https://doi.org/10.1007/s00382-010-0796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0796-0

Keywords

Navigation