Skip to main content

Advertisement

Log in

On the potential impact of the stratosphere upon seasonal dynamical hindcasts of the North Atlantic Oscillation: a pilot study

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We have investigated the importance of the stratosphere–troposphere linkage on the seasonal predictability of the North Atlantic Oscillation in a pilot study using a high horizontal resolution atmospheric general circulation model, and covering the 14 winters from 1979/1980 to 1992/1993. We made an ensemble of simulations with the Meteo-France “Arpege Climat” model (V3.0) with a well-resolved stratosphere, and a broad comparison is drawn with hindcasts from previously published experiments using low-top and lower horizontal resolution models, but covering the same winters with the same ensemble size and verification method. For the January–February–March North Atlantic Oscillation index, the deterministic hindcast skill score is 0.59, using re-analyses as verification. It is comparable to the reported multi-model skill score (0.57). The largest improvement originates from the winter 1986/1987 characterised by a major stratospheric sudden warming. We demonstrate that there is then a high-latitude zonal-mean zonal wind decrease in the stratosphere–troposphere hindcasts over a broad pressure range. This is consistent with a composite analysis showing that model anomalous vortex events, either weak or strong, lead to a North Atlantic Oscillation index anomaly in the troposphere, which persists, on average, for 1 month after the anomaly peaked in the stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton A, O’Neill A (2003) Stratospheric memory and skill of extended range weather forecasts. Science 301:636–640

    Article  Google Scholar 

  • Cassou C, Terray L (2001) Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European Sector: a study with the Arpege model. J Clim 14:4266–4291

    Article  Google Scholar 

  • Charlton AJ, O’Neill A, Stephenson DB, Lahoz WA, Baldwin MP (2003) Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? QJR Met Soc 129:3205–3224

    Article  Google Scholar 

  • Charlton AJ, O’Neill A, Lahoz WA, Massacand AC (2004) Sensitivity of tropospheric forecasts to stratospheric initial conditions. QJR Met Soc 130:1771–1792

    Article  Google Scholar 

  • Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106:27307–27322

    Article  Google Scholar 

  • Christiansen B (2005) Downward propagation and statistical forecast of the near-surface weather. J Geophys Res 110:D14104. doi:10.1029/2004JD005431

    Article  Google Scholar 

  • Deque M (2004) Seasonal prediction over the Atlantic at the French Weather Service. CLIVAR symposium

  • Deque M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model—a contribution to the french community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Doblas-Reyes FJ et al (1998) North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus A 50:573–595

    Article  Google Scholar 

  • Doblas-Reyes FJ, Deque M, Piedelievre JP (2000) Multi-model spread and probabilistic seasonal forecasts in PROVOST. QJR Met Soc 126:2069–2087

    Article  Google Scholar 

  • Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Clim Dyn 21:501–514

    Article  Google Scholar 

  • Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi:10.1029/2009GL039334

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) The importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105:14841–14861

    Article  Google Scholar 

  • Kodera K, Chiba M, Yamazaki K, Shibata K (1991) A possible influence of the polar night stratospheric jet on the subtropical tropospheric jet. J Met Soc Japan 69:715–720

    Google Scholar 

  • Kuroda Y (2008) Role of the stratosphere on the predictability of medium-range weather forecast: a case study of winter 2003–2004. Geophys Res Lett 35. doi: 10.1029/2008GL034902

  • Limpasuvan V, Thompson DWJ, Hartman DL (2004) The life cycle of the northern hemisphere sudden stratospheric warmings. J Clim 17:2584–2596

    Article  Google Scholar 

  • Limpasuvan V, Hartman DL, Thompson DWJ, Jeev K, Yung YL (2005) Stratosphere–troposphere evolution during polar vortex intensification. J Geophys Res 110:D24. doi:10.1029/2005JD006302

    Article  Google Scholar 

  • Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon Weather Rev 125:788–801

    Article  Google Scholar 

  • Manney GL, Krüger K, Sabutis JL, Sena SA, Pawson S (2005) The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J Geophys Res 110:D04107. doi:10.1029/2004JD005367

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118:847–873

    Article  Google Scholar 

  • Mukogawa H, Sakai H, Hirooka T (2005) High Sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys Res Lett 32. doi: 10.1029/2005GL022909

  • Muller W, Appenzeller AC, Schar C (2005) Probabilistic seasonal prediction of the winter North Atlantic Oscillation and its impact on near surface temperature. Clim Dyn 24(2–3):213

    Article  Google Scholar 

  • Norton WA (2003) Sensitivity of northern hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys Res Lett 30. doi: 10.1029/2003GL016958

  • Orsolini YJ, Kvamstø N, Kindem IT, Honda M, Nakamura H (2008) The Aleutian-Icelandic seesaw, ENSO and the stratospheric polar night jet in GCM winter hindcasts. J Met Soc Japan 86:817–825

    Article  Google Scholar 

  • Palmer TN, Shukla J (2000) Editorial to DSP/PROVOST special issue. QJR Met Soc 126:1989–1990

    Article  Google Scholar 

  • Palmer TN et al (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Pavan V, Doblas-Reyes FJ (2000) Multi-model seasonal hindcasts over the Euro-Atlantic: skill scores and dynamic features. Clim Dyn 16:611–662

    Article  Google Scholar 

  • Pavan V, Molteni F, Brankovic C (2000a) Winter variability in the Euro-Atlantic region in observations and in ECMWF seasonal ensemble experiments. QJR Met Soc 126:2143–2173

    Article  Google Scholar 

  • Pavan V, Tibaldi S, Brankovic C (2000b) Seasonal prediction of blocking frequency: results from winter ensemble experiments. QJR Met Soc 126:2125–2142

    Article  Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Quiroz RS (1986) The association of stratospheric warmings with tropospheric blocking. J Geophys Res 91:5277–5285

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Ricard J-L, Royer J-F (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi:10.1029/2005GL023226

    Article  Google Scholar 

  • Sigmond M, Scinocca JF, Kushner P (2008) Impact of the stratosphere on tropospheric climate change. Geophys Res Lett 35:L12706. doi:10.1029/2008GL033573

    Article  Google Scholar 

  • Zhou S, Miller AJ, Wang J, Angell JK (2002) Downward-propagating temperature anomalies in the preconditioned polar stratosphere. J Clim 15:781–792

    Article  Google Scholar 

Download references

Acknowledgments

This project was financed through the Norwegian Research Council of Norway. We also acknowledge the European Centre for Medium-Range Weather Forecast for providing re-analyses and model data. We thank Dr. B. Christiansen and M. Deque for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Joseph Orsolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsolini, Y.J., Kindem, I.T. & Kvamstø, N.G. On the potential impact of the stratosphere upon seasonal dynamical hindcasts of the North Atlantic Oscillation: a pilot study. Clim Dyn 36, 579–588 (2011). https://doi.org/10.1007/s00382-009-0705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0705-6

Keywords

Navigation