Skip to main content
Log in

Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = −0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan R, Lindesay J, Parker D (1996) El Niño southern oscillation and climatic variability. CSIRO, Melbourne

    Google Scholar 

  • Ansell TJ, Reason CJC, Smith IN, Keay K (2000) Evidence for decadal variability in southern Australian rainfall and relationships with regional pressure and sea surface temperatures. Int J Climatol 20:1113–1129. doi:10.1002/1097-0088(200008)20:10<1113::AID-JOC531>3.0.CO;2-N

    Article  Google Scholar 

  • Ash J (1983) Tree rings in tropical Callitris macleayana F. Muell Aust J Bot 31:277–281. doi:10.1071/BT9830277

    Article  Google Scholar 

  • Baker PJ, Palmer JG, D’Arrigo RD (2008) The dendrochronology of Callitris intratropica in northern Australia: annual ring structure, chronology development and climate correlations. Aust J Bot 56:311–320. doi:10.1071/BT08040

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Briffa KR (1984) Tree-climate relationships and dendroclimatological reconstruction in the British Isles. PhD thesis, University of East Anglia

  • Buckley BM, R.J.S. W, Kelly PE, Larson DW, Cook ER (2004) Inferred summer precipitation for southern Ontario back to AD 610, as reconstructed from ring widths of Thuja occidentalis. Can J Res 34:2541–2553. doi:10.1139/x04-129

  • Bureau of Meteorology (2001) Australia’s global climate observing system. Bureau of Meteorology, Melbourne

    Google Scholar 

  • Cai W, Shi G, Li Y (2005) Multidecadal fluctuations of winter rainfall over southwest Western Australia simulated in the CSIRO mark 3 coupled model. Geophys Res Lett 32:L12701. doi:10.1029/2005GL022712

    Article  Google Scholar 

  • Cai WJ, Whetton PH, Karoly DJ (2003) The response of the Antarctic oscillation to increasing and stabilized atmopsheric CO2. J Clim 16:1525–1538

    Google Scholar 

  • Case RA, MacDonald GM (1995) A dendroclimatic reconstruction of annual precipitation on the Western Canadian Prairies since A.D. 1505 from Pinus flexilis James. Quat Res 44:267–275. doi:10.1006/qres.1995.1071

    Article  Google Scholar 

  • Cook ER (1985) A time series approach to tree ring standardization. PhD thesis, University of Arizona

  • Cook ER, Briffa K (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. International Institute for Applied Systems Analysis, Netherlands, pp 97–162

    Google Scholar 

  • Cook ER, Briffa K, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi:10.1002/joc.3370140404

    Article  Google Scholar 

  • Cook ER, Krusic PJ (2006) ARSTAN40c. tree-ring laboratory, Lamont-Doherty earth observatory, New York. Available from http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi:10.1177/095968369700700314

    Article  Google Scholar 

  • CSIRO (2001) Climate change: projections for Australia. CSIRO Climate Impact Group, Aspendale

    Google Scholar 

  • Cullen LE, Grierson PF (2006) Is cellulose extraction necessary for developing stable carbon and oxygen isotope chronologies from Callitris glaucophylla?. Palaeogeogr Palaeoclimatol Palaeoecol 236:206–216. doi:10.1016/j.palaeo.2005.11.003

    Article  Google Scholar 

  • Cullen LE, Grierson PF (2007) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Clim Change 85:213–229. doi:10.1007/s10584-006-9206-3

    Article  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179

    Google Scholar 

  • Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew

    Google Scholar 

  • Frederiksen JS, Frederiksen C (2005) Decadal changes in Southern Hemisphere winter cyclogenesis. CSIRO Marine and Atmospheric Research, Aspendale

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Guiot J, Gordon GA, Schweingruber F (1990) Methods of calibration, verification, and reconstruction. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. International Institute for Applied Systems Analysis, Netherlands, pp 163–217

    Google Scholar 

  • González-Elizondo M, Jurado E, Návar J, Gonzálex-Elizondo MS, Villanueva J, Aguirre O, Jiménez J (2005) Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: a 1681–2001 rain reconstruction. For Ecol Manage 213:39–53

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL et al (2002) The CSIRO Mk3 climate system model. CSIRO Division of Atmospheric Research, Aspendale

    Google Scholar 

  • Graham NE, Hughes MK, Ammann CM et al (2007) Tropical Pacific—mid-latitude teleconnections in medieval times. Clim Change 83:241–285. doi:10.1007/s10584-007-9239-2

    Article  Google Scholar 

  • Graumlich LJ (1991) Subalpine tree growth, climate, and increasing CO2: an assessment of recent growth trends. Ecol 72:1–11. doi:10.2307/1938895

    Article  Google Scholar 

  • Hennessy KJ, Suppiah R, Page CM (1999) Australian rainfall changes, 1910–1999. Aust Meteorol Mag 48:1–13

    Google Scholar 

  • Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • IOCI (2002) Climate variability and change in south west Western Australia. Indian Ocean Climate Initiative Panel, Perth

    Google Scholar 

  • IOCI (2005) Indian Ocean climate initiative stage 2: report of phase 1 activity. Indian Ocean Climate Initiative Panel, Perth

    Google Scholar 

  • Jiang N, Neelin JD, Ghil M (1995) Quasi-quadriennial and quasi-biennial variability in the equatorial Pacific. Clim Dyn 12:101–112. doi:10.1007/BF00223723

    Article  Google Scholar 

  • Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8:455–471. doi:10.1191/095968398667194956

    Article  Google Scholar 

  • Knapp PA, Soulé PT, Grissino-Mayer HD (2001) Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Glob Chang Biol 7:903–917. doi:10.1046/j.1365-2486.2001.00452.x

    Article  Google Scholar 

  • Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249. doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2

    Article  Google Scholar 

  • LaMarche VC, Holmes R, Dunwiddie PW, Drew LG (1979) Tree-ring chronologies of the Southern Hemisphere 4. Australia. Laboratory of tree-ring research, University of Arizona

  • Lange RT (1965) Growth ring characteristics in an arid zone conifer. Trans R Soc S Aust 89:133–137

    Google Scholar 

  • Lawrence DM, Grissino-Mayer HD (2001) Verify for windows. Available from http://fuzzo.com/science/verify.htm

  • Li Y, Cai W, Campbell EP (2005) Statistical modeling of extreme rainfall in southwest Western Australia. J Clim 18:852–863. doi:10.1175/JCLI-3296.1

    Article  Google Scholar 

  • Lough JM (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22. doi:10.1029/2006PA001377

  • MacDonald GM, Sziecz JM, Claricoates J, Dale KA (1998) Response of the Central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr 88:183–208. doi:10.1111/1467-8306.00090

    Article  Google Scholar 

  • Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445. doi:10.1007/BF00142586

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1889–1922. doi:10.1002/joc.680

    Article  Google Scholar 

  • Nicholls N, Lavery B (1992) Australian rainfall trends during the twentieth century. Int J Climatol 12:153–163. doi:10.1002/joc.3370120204

    Article  Google Scholar 

  • Nicholls N, Lavery B, Frederiksen C, Drosdowsky W (1996) Recent apparent changes in relationships between the El Nino—southern oscillation and Australian rainfall and temperature. Geophys Res Lett 23:3357–3360. doi:10.1029/96GL03166

    Article  Google Scholar 

  • Osborn TJ, Briffa K, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochron 15:89–99

    Google Scholar 

  • Perlinski JE (1986) The dendrochronology of Callitris columellaris F. Muell. in arid, sub-tropical continental Western Australia. M.A. thesis, University of Western Australia

  • Pittock B (2003) Climate change: an Australian guide to the science and potential impacts. Australian Greenhouse Office, Canberra

    Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi:10.1007/s003820050284

    Article  Google Scholar 

  • Rodionov SN (2006) Use of prewhitening in climate regime shift detection. Geophys Res Lett 33:L12707. doi:10.1029/2006GL025904

    Article  Google Scholar 

  • Ropelewski CF, Jones PD (1987) An extension of the Tahiti–Darwin southern oscillation index. Mon Weather Rev 115:2161–2165. doi:10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2

    Article  Google Scholar 

  • Samuel JM, Verdon DC, Sivapalan M, Franks SW (2006) Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall. Water Res Bull 42:W08402 doi: 10.1029/2005WR004672

  • Sarris D, Christodoulakis D, Korner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 13:1187–1200. doi:10.1111/j.1365-2486.2007.01348.x

    Article  Google Scholar 

  • Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for medieval hydroclimate. Quat Sci Rev 26:2322–2336. doi:10.1016/j.quascirev.2007.04.020

    Article  Google Scholar 

  • Smith IN (2004) An assessment of recent trends in Australian rainfall. Aust Metab Mag 53:163–173

    Google Scholar 

  • Smith IN, McIntosh PD, Ansell TJ, Reason CJC, McInnes K (2000) Southwest Western Australia winter rainfall and its association with Indian Ocean climate variability. Int J Climatol 20:1913–1930. doi:10.1002/1097-0088(200012)20:15<1913::AID-JOC594>3.0.CO;2-J

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stahle DW, Cleaveland MK (1994) Tree-ring reconstructed rainfall over the southeastern USA during the medieval warm period and little ice age. Clim Change 26:199–212. doi:10.1007/BF01092414

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. IEEE Proc 70:1055–1096. doi:10.1109/PROC.1982.12433

    Article  Google Scholar 

  • Treble PC, Chappell J, Gagan MK, McKeegan KD, Harrison TM (2005) In situ measurements of seasonal δ 18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet Sci Lett 233:17–32. doi:10.1016/j.epsl.2005.02.013

    Article  Google Scholar 

  • Treble PC, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153. doi:10.1016/S0012-821X(03)00504-1

    Article  Google Scholar 

  • Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. doi:10.1038/nature04743

    Article  Google Scholar 

  • Watson E, Luckman BH (2001) Dendroclimatic reconstruction of precipitation for sites in the southern Canadian Rockies. Holocene 11:203–213. doi:10.1191/095968301672475828

    Article  Google Scholar 

  • Watson E, Luckman BH (2004) Tree-ring based reconstructions of precipitation for the southern Canadian Cordillera. Clim Change 65:209–241. doi:10.1023/B:CLIM.0000037487.83308.02

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with application in dendroclimatology and hydrometeorolgy. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hermon Slade Foundation. Thank-you to Mathias Boer, Tim Langlois and two referees for their helpful comments that substantially improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline F. Grierson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, L.E., Grierson, P.F. Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris . Clim Dyn 33, 433–444 (2009). https://doi.org/10.1007/s00382-008-0457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0457-8

Keywords

Navigation