Skip to main content

Advertisement

Log in

Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Cyclone activity and life cycle are analysed in the coupled GCMs ECHAM5/OM and ECHAM4/OPYC3. First, the results for the present climate (1978–1999) are compared with ERA-40 and NCEP/NCAR reanalyses, showing a drastic improvement in the representation of cyclone activity in ECHAM5/OM compared to ECHAM4/OPYC3. The total number of cyclones, cyclone intensity, propagation velocity and deepening rates are found to be much more realistic in ECHAM5/OM relative to ECHAM4/OPYC3. Then, changes in extra tropical cyclone characteristics are compared between present day climate and future climate under the emission-scenario A1B using ECHAM5/OM. This comparison is performed using the 20-year time slices 1978–1999, 2070–2090 and 2170–2190, which were considered to be representative for the various climate conditions. The total number of cyclones does not undergo significant changes in a warmer climate. However, regional changes in cyclone numbers and frequencies are evident. One example is the Mediterranean region where the number of cyclones in summer increases almost by factor 2. Some noticeable changes are also found in cyclone life cycle characteristics (deepening rate and propagation velocity). Cyclones in the future climate scenario tend to move slower and their deepening rate becomes stronger, while cyclone intensity does not undergo significant change in a warmer climate. Generally, our results do not support the hypothesis of enhanced storminess under future climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig .3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander LV et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Article  Google Scholar 

  • Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J ACM 17:589–600

    Article  Google Scholar 

  • Bauer M, Del Geniob AD (2006) Composite analysis of winter cyclones in a GCM: influence on climatological humidity. J Clim 19:1652–1672

    Article  Google Scholar 

  • Beersma JJ, Rider KM, Komen GJ, Kaas E, Kharin VV (1997) An analysis of extra-tropical storms in the North Atlantic region as simulated in a control and 2 x CO2 time-slice experiment with a high resolution atmosphere model. Tellus A 49:347–361

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Hagemann S (2004) Sensitivity of the ERA-40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus 56A:456–471

    Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Climate 19: 3518–3543

    Article  Google Scholar 

  • Blender R, Schubert M (2000) Cyclone tracking in different spatial and temporal resolutions. Mon Weather Rev 128:377–384

    Article  Google Scholar 

  • Blender R, Fraedrich K, Lunkeit F (1997) Identification of cyclone-track regimes in the North Atlantic. QJR Meteorol Soc 123A:727–741

    Article  Google Scholar 

  • Carleton AM (1988) Meridional transport of eddy sensible heat in winters marked by extremes of the North Atlantic Oscillation, 1948/49 1979/80. J Climate 1:212–226

    Article  Google Scholar 

  • Carnell RE, Senior CA (1998) Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dyn 14:369–383

    Article  Google Scholar 

  • Carnell RE, Senior CA, Mitchell JFB (1996) An assessment of measures of storminess: simulated changes in northern hemisphere winter due to increasing CO2. Clim Dyn 12:467– 476

    Google Scholar 

  • Cassano JJ, Uotila P, Lynch A (2006) Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, Part 1. Arctic Int J Climatol 26:1027–1049

    Article  Google Scholar 

  • Christoph M, Ulbrich U, Speth P (1997) Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J Atmos Sci 54:1589–1599

    Article  Google Scholar 

  • Christoph M, Ulbrich U, Oberhuber JM, Roeckner E (2000) The role of ocean dynamics for low-frequency fluctuations of the NAO in a coupled ocean-atmosphere GCM. J Clim 13:2536–2549

    Article  Google Scholar 

  • Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteor Soc 81:417–425

    Article  Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Frankignoul E, Friederichs P, Kestenare E (2003) Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic–European sector. Ann Geophys 46:72–85

    Google Scholar 

  • Geng Q, Sugi M (2001) Variability of the North Atlantic cyclone activity in winter analysed from NCEP-NCAR Reanalysis data. J Clim 14:3863–3873

    Article  Google Scholar 

  • Geng Q, Sugi M (2003) Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulphate aerosols––study with a high resolution AGCM. J Clim 16:2262–2274

    Article  Google Scholar 

  • Graham NE, Diaz HF (2001) Evidence for intensification of North Pacific winter cyclones since 1948. Bull Am Meteor Soc 82:18691–1893

    Google Scholar 

  • Grigoriev SV, Gulev SK, Zolina O (2000) Innovative software facilitates cyclone tracking and analysis. EOS Electron Suppl 81:16

    Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1343–1367

    Article  Google Scholar 

  • Gulev SK, Grigorieva V (2006) Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J Clim 19:5667–5685

    Article  Google Scholar 

  • Gulev SK, Zolina O, Grigoriev S (2001) Extratropical cyclone varibility in the Northern Hemisphere winter from the NCEP/NCAR-Reanalyis data. Clim Dyn 17:795–809

    Article  Google Scholar 

  • Gulev SK, Jung T, Ruprecht E (2002) Climatology and interannual variability in the intensity of synoptic-scale processes in the North Atlantic from the NCEP/NCAR reanalysis data. J Clim 15:809–828

    Article  Google Scholar 

  • Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 model. J Clim 19:3810–3827

    Article  Google Scholar 

  • Hall NMJ, Hoskins BJ, Valdes PJ, Senior CA (1994) Storm tracks in a high-resolution GCM with doubled carbon dioxide. QJR Meteorol Soc 120:1209–1230

    Article  Google Scholar 

  • Hanson CE, Palutikof JP, Davies TD (2004) Objective cyclone climatologies of the North Atlantic––a comparison between the ECMWF and NCEP Reanalyses. Clim Dyn 22:757–769. doi:10.1007/s00382–004–0415-z

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys Res Lett 27:989–992

    Article  Google Scholar 

  • Hines KM, Bromwich DH, Marshall GJ (2000) Artificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica. J Clim 13:3940–3952

    Article  Google Scholar 

  • Hodges KI (1994) A general method for tracking analysis and its application to meteorological data. Mon Weather Rev 122:2573–2586

    Article  Google Scholar 

  • Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373

    Article  Google Scholar 

  • Hodges KI, Hoskins BJ (2001) Comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon Weather Rev 131:2012–2037

    Article  Google Scholar 

  • Hodges KI, Hoskins BJ, Boyle J, Thorncroft C (2003) A comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon Weather Rev 131:2012–2037

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59:1041–1061

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (eds) (2001) IPCC 2001, Climate change 2001: the scientific basis. Contribution of Working Group I to the Third of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LE, Pettersson LH, Hasselmann K, Cattle AP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus Ser A 56:328–341

    Article  Google Scholar 

  • Jung T, Hilmer M, Ruprecht E, Kleppek S, Gulev SK, Zolina O (2003) Characteristics of the recent eastward shift of interannual NAO variability. J Clim 16:3371–3382

    Article  Google Scholar 

  • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Cyclone characteristics dependence on the spatial resolution in ECMWF seasonal forecasting system. QJ R Meteorol Soc (in press)

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupl model ECHAM5/MPI-OM. J Clim 16:3952–3972

    Article  Google Scholar 

  • Kålberg P, Berrisford P, Hoskins B, Simmons A, Uppala S, Lamy-Thepaut S, Hine R (2005) ERA-40 Atlas. ECMWF Reanal Proj Rep No 19

  • Kalnay E et al (1996) The NCEP/NCAR 40-years reanalysis project. Bull Am Meteor Soc 77:437–471

    Google Scholar 

  • Keenlyside N, Latif M (2003) ENSO simulation and prediction with the MPI-OM1/ECHAM5 coupled model, EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003. abstract 6248

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J Clim 13:3760–3788

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woolen J, Chelliah M, Ebiszusaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50 year reanalysis. BAMS 82:247–267

    Article  Google Scholar 

  • Kodera K, Koinde H, Yoshimura H (1999) Northern hemisphere winter circulation associated with the North Atlantic Oscillation and stratospheric polar night jet. Geophys Res Lett 26:443–446

    Article  Google Scholar 

  • König W, Sausen R, Sielmann F (1993) Objective identification of cyclones in GCM simulations. J Clim 6:2217–2231

    Article  Google Scholar 

  • Lambert S, Sheng J, Boyle J (2002) Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP1). Clim Dyn 19:1–16

    Article  Google Scholar 

  • Leckebusch GC, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Change 44:181–193

    Article  Google Scholar 

  • Lunkeit F, Ponater M, Sausen R, Sogalla M, Ulbrich U, Windelbrand M (1996) Cyclonic activity in a warmer climate. Contrib Atmos Phys 69:393–407

    Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614

    Article  Google Scholar 

  • Löptien U, Ruprecht E (2005) Effect of synoptic systems on the variability of the North Atlantic Oscillation. Mon Weather Rev 133:2894–2904

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max–Planck-institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5:91–127

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the Coupled Model Intercomparison Project. Bull Am Meteor Soc 86:89–93

    Article  Google Scholar 

  • Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM, Hu A, Lawrence DM, Teng H, Buja LE, Strand WG (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2716

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centers from digital data. Part I: development and operation of the scheme. Met Mag 39:155–166

    Google Scholar 

  • Nakicenovic N et al (2000) IPCC Special report on emission scenarios. Cambridge University Press, Cambridge, 599 pp

  • Oberhuber JM (1993a) The OPYC ocean general circulation model, Deutsches Klimarechenzentrum GmbH, Hamburg, Germany, Technical Report 7

  • Oberhuber JM (1993b) Simulation of the Atlantic circulation with a coupled sea ice-mixed layer––isopycnial general crculation model. Part I: model description. J Phys Oceanogr 22:808–829

    Article  Google Scholar 

  • Orlanski I (1998) Poleward deflection of storm tracks. J Atmos Sci 55:2577–2602

    Article  Google Scholar 

  • Paeth H, Hense A, Glowienka-Hense R, Voss S, Cubasch U (1999) The North Atlantic Oscillation as an indicator for greenhouse-gas induced regional climate change. Clim Dyn 15:953–960

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch C, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210. doi:10.1007/s00382–007-0230-4

    Article  Google Scholar 

  • Raible CC (2007) On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA-40. Geophys Res Lett 34:L07703. doi:10.1029/2006GL029084

    Article  Google Scholar 

  • Raible CC, Blender R (2004) Northern Hemisphere midlatitude cyclone variability in GCM simulations with different ocean representations. Clim Dyn 22:239–248. doi:10.1007/s00382-003-0380-y

    Article  Google Scholar 

  • Raible CC, Yoshimori M, Stocker TF, Casty C (2007a) Extreme midlatitude cyclones and their implications to precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Clim Dyn 28:409–423. doi:10.1007/s00382-006-0188-7

    Article  Google Scholar 

  • Raible CC, Della-Marta P, Schwierz C, Wernli H, Blender R (2007b) Northern Hemisphere midlatitude cyclones: A comparison of detection and tracking methods and different re-analyses. Mon Weather Rev, revised 04/07

  • Roebber PJ, (1984) Statistical analysis and updated climatology of explosive cyclones. Mon Weather Rev 112:1577–1589

    Article  Google Scholar 

  • Roebber PJ (1989) On the statistical analysis of cyclone deepening rates. Mon Weather Rev 117:2293–2298

    Article  Google Scholar 

  • Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner IP (1996a) ENSO variability and atmospheric response in a global coupled atmosphere–ocean GCM. Clim Dyn 12:737–754

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996b) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max Planck Institut für Meteorologie, Report No. 218, Hamburg, Germany, 90 pp

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description, MPI Hamburg, Germany, Technical Report 349

  • Roeckner E, Bronkopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere models. J Clim 19:3771–3791

    Article  Google Scholar 

  • Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon Weather Rev 112:1999–2015

    Article  Google Scholar 

  • Rogers JC (1997) North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of Northern Europe, J Clim. 10:1635–1647

    Article  Google Scholar 

  • Rogers E, Bosart LF (1986) An investigation of explosively deepening oceanic cyclones. Mon Weather Rev 114:702–718

    Article  Google Scholar 

  • Rudeva I, Gulev SK (2007) Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon Weather Rev 135:2568–2587

    Article  Google Scholar 

  • Sanders F, Gyakum JR (1980) Synoptic–dynamic climatology of the “bomb”. Mon Weather Rev 108:1589–1606

    Article  Google Scholar 

  • Schubert M, Perlwitz J, Blender R, Fraedrich K, Lunkeit F (1998) North Atlantic cyclones in CO2-induced warm climate simulations: frequency, intensity, and tracks, Clim Dyn 14:827–837

    Article  Google Scholar 

  • Senior CA, Jones RG, Lowe JA, Durman CF, Hudson D (2002) Predictions of extreme precipitation and sea-level rise under climate change, philosophical transactions of the Royal Society A: mathematical, physical and engineering. Sciences 360:1301–1311

    Google Scholar 

  • Semenov V, Bengtsson L (2002) Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Clim Dyn 19:123–140

    Article  Google Scholar 

  • Serreze MC (1995) Climatological aspects of cyclone development and decay in the Arctic. Atmos Ocean 33:1–23

    Google Scholar 

  • Serreze MC, Barry F (1988) Synoptic activity in the Arctic basin, 1979–85. J Clim 1:1276–1295

    Article  Google Scholar 

  • Serreze MC, Box J, Barry R, Walsh J (1993) Characteristics of Arctic synoptic activity, 1952–1989. Meteorol Atmos Phys 51:147–164

    Article  Google Scholar 

  • Serreze MC, Carse F, Barry RG, Rogers JC (1997) Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with the recent changes in the northern hemisphere circulation. J Clim 10:453–464

    Article  Google Scholar 

  • Sickmoeller M, Blender R, Fraedrich K (2000) Observed winter cyclone tracks in the Northern hemisphere in re-analysed ECMWF data. QJR Meteorol Soc 126:591–62

    Google Scholar 

  • Simmonds I, Murray RJ (1999) Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods. Weather Forecasting 14:878–891

    Article  Google Scholar 

  • Simmonds I, Keay K (2000) Variability of Southern Hemisphere extratropical cyclone behaviour, 1958–1997. J Clim 13:550–561

    Article  Google Scholar 

  • Sinclair MR (1994) An objective cyclone climatology for the Southern Hemisphere. Mon Weather Rev 122:2239–2256

    Article  Google Scholar 

  • Sinclair MR (1997) Objective identification of cyclones and their circulation, intensity and climatology. Weather Forecasting 12:591–608

    Article  Google Scholar 

  • Sinclair MR (2002) Extratropical transition of Southwest Pacific tropical cyclones. Part I: climatology and mean structure changes. Mon Weather Rev 130:590–609

    Article  Google Scholar 

  • Sinclair MR, Watterson IG (1999) Objective assessment of extratropical weather systems in simulated climates. J Clim 12:3467–3485

    Article  Google Scholar 

  • Taylor KE (1986) An analysis of the biases in traditional cyclone frequency maps. Mon Weather Rev 114:1481–1490

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 398:694

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U et al (2006) The ERA-40 analysis. QJR Meteorolog Soc 131:2961–3012

    Article  Google Scholar 

  • Wang XL, Zwiers FW, Swail FR (2004) North Atlantic Ocean wave climate change scenarios for the twenty-first century. J Clim 17:2368–2383

    Article  Google Scholar 

  • Wang XL, Swail VR, Zwiers FW (2006) Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR Reanalysis for 1958–2001. J Clim 19: 3145–3166

    Article  Google Scholar 

  • White G (2000) Long-term trends in the NCEP/NCAR reanalysis. In: 2nd International. Conference on Reanalyses. Reading, England. WCRP-109 (WMO/TD 985), WMO, Geneva, Switzerland, pp 54–57

  • Zolina O, Gulev SK (2002) Improving the accuracy of mapping cyclone numbers and frequencies. Mon Weather Rev 130:748–759

    Article  Google Scholar 

  • Zolina O, Gulev SK (2003) Synoptic variability of ocean-atmosphere turbulent fluxes associated with atmospheric cyclones. J Clim 16:3023–3041

    Article  Google Scholar 

  • Zolina O, Simmer C, Kapala A, Gulev SK (2005) On the robustness of the estimates of centennial-scale variability in heavy precipitation from station data over Europe. Geophys Res Lett 32. doi:10.1029/2005GL023231

  • Zolina O, Simmer C, Kapala A, Bachner S, Gulev SK, Maechel H (2008) Seasonaly dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J Geophys Res (in press)

Download references

Acknowledgments

This study was supported by the EU-project ENSEMBLES, the Ministry of Science and Education of Russian Federation under the contract 02.515.11.5032 and by the Russian Foundation for Basic Research (grant 05-05-64882). We also benefited from special co-operative grant of DFG provided for the exchange of visits between IFM-GEOMAR and the P.P. Shirshov Institute of Oceanology (LO-1377/1-1). The group “Modelle und Daten” of MPI (Hamburg) is acknowledged for the provision of ECHAM models outputs. NCEP/NCAR and ERA-40 reanalyses were made available by courtesy of NCEP and ECMWF. Suggestions and criticism of Christoph Raible of University of Bern and anonymous reviewer considerably helped to improve the manuscript. We appreciate helpful discussions with our colleagues Thomas Jung of ECMWF (Reading), Noel Keenlyside and Eberhard Ruprecht of IFM-GEOMAR (Kiel), Irina Rudeva of IORAS (Moscow) and Erich Roeckner of MPI (Hamburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Löptien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löptien, U., Zolina, O., Gulev, S. et al. Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Clim Dyn 31, 507–532 (2008). https://doi.org/10.1007/s00382-007-0355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0355-5

Keywords

Navigation