Skip to main content

Advertisement

Log in

Cloud radiative forcing of subtropical low level clouds in global models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Simulations of subtropical marine low clouds and their radiative properties by nine coupled ocean-atmosphere climate models participating in the fourth assesment report (AR4) of the intergovernmental panel on climate change (IPCC) are analyzed. Satellite observations of cloudiness and radiative fluxes at the top of the atmosphere (TOA) are utilized for comparison. The analysis is confined to the marine subtropics in an attempt to isolate low cloudiness from tropical convective systems. All analyzed models have a negative bias in the low cloud fraction (model mean bias of  −15%). On the other hand, the models show an excess of cloud radiative cooling in the region (model mean excess of 13 W m−2). The latter bias is shown to mainly originate from too much shortwave reflection by the models clouds rather than biases in the clear-sky fluxes. These results confirm earlier studies, thus no major progress in simulating the marine subtropical clouds is noted. As a consequence of the combination of these two biases, this study suggests that all investigated models are likely to overestimate the radiative response to changes in low level subtropical cloudiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan RP, Ringer MA (2003) Inconsistencies between satellite estimates of longwave cloud forcing and dynamical fields from reanalyses. Geophys Res Lett 30(9):1491. doi:10.1029/2003GL017019

    Article  Google Scholar 

  • Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32(L20):806. doi:10.1029/2005GL023851

    Google Scholar 

  • Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86

    Article  Google Scholar 

  • Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95(D10):16601–16615

    Article  Google Scholar 

  • Cess RD, Zhang MH, Ingram WJ, Potter GL, Alekseev V, Barker HW, Cohen-Solal E, Colman RA, Dazlich DA, Del Genio AD, Dix MR, Esch M, Fowler LD, Fraser JR, Galin V, Gates WL, Hack JJ, Kiehl JT, Le Treut H, Lo KK-W, McAvaney BJ, Meleshko VP, Morcrette J-J, Randall DA, Roeckner E, Royer J-F, Schlesinger ME, Sporyshev PV, Timbal B, Volodin EM, Taylor KE, Wang W, Wetherald RT (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res 101(D8):12791–12794

    Article  Google Scholar 

  • Charlock TP, Ramanathan V (1985) The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J Atmos Sci 42:1408–1429

    Article  Google Scholar 

  • Coakley JAJ, Baldwin DG (1984) Towards the objective analysis of clouds from satellite imagery data. J Clim Appl Meteor 23:1065–1099

    Article  Google Scholar 

  • Collins W, Rasch P, Boville B, Hack J, McCaa J, Williamson D, Kiehl J, Briegleb B, Bitz C, Lin S, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0), tech note TN-464+STR. Technical report. National Center For Atmospheric Research, Boulder

    Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Gnanadesikan A, Dixon KW, Griffies SM, V Balaji, Barreiro M, Beesley JA, Cooke WF, Delworth TL, Gerdes R, Harrison MJ, Held IM, Hurlin WJ, Lee H-C, Liang Z, Nong G, Pacanowski RC, Rosati A, Russell J, Samuels BL, Song Q, Spelman MJ, Stouffer RJ, Sweeney CO, Vecchi G, Winton M, Wittenberg AT, Zeng F, Zhang R, Dunne JP (2006) GFDL’s CM2 global coupled climate models. Part II: the baseline ocean simulation. J Clim 19:675–697

    Article  Google Scholar 

  • Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J Geophys Res 95:18687–18703

    Article  Google Scholar 

  • Hartmann D, Ockert-Bell M, Michelsen M (1992) The effect of cloud type on earth’s energy balance: global analysis. J Clim 5:1281–1304

    Article  Google Scholar 

  • IPCC, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, H M (eds) (2007) IPCC: climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Technical report. Cambridge University Press, Cambridge, p 996

  • Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the tropical western pacific. Geophys Res Lett 30(21):2082. doi:10.1029/2003GL018367

    Article  Google Scholar 

  • K-1 Model Developers (2004) K-1 coupled model (MIROC) description. Hasumi H, Emori S (eds) Tech. report 1. Technical report, Center for Climate System Research. University of Tokyo, Tokyo

  • Klein S, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Klein S, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531

    Article  Google Scholar 

  • Li Z, Trishchenko A (2001) Quantifying uncertainties in determining sw cloud radiative forcing and cloud absorption due to variability in atmospheric conditions. J Atmos Sci 58:376–389

    Article  Google Scholar 

  • Marti O, Bellier J, Benshila R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne J, Fairhead L, Filiberti M-A, Fichefet T, Friedlingstein P, Grandpeix J-Y, Hourdin F, Krinner G, Lévy C, Musat I, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Report 26. Technical report, Institut Pierre Simon Laplace, Paris

  • Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical parametrizations in the Hadley Centre climate model-HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Potter GL, Cess RD (2004) Testing the impact of clouds on the radiation budgets of 19 AMIP models. J Geophys Res 109(D2):106. doi:10.1029/2003JD004018

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63

    Article  Google Scholar 

  • Ringer M, Allan R (2004) Evaluating climate model simulations of tropical cloud. TELLUS A 56:308–327

    Article  Google Scholar 

  • Rossow W, Schiffer R (1999) Advances in Understanding Clouds from ISCCP. Bull Am Meteor Soc 80:2261–2287

    Article  Google Scholar 

  • Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60:1201–1219

    Article  Google Scholar 

  • Slingo J (1980) A cloud parametrization scheme derived from gate data for use with a numerical model. Quart J Roy Meteor Soc 106:747–770

    Article  Google Scholar 

  • Slingo A (1990) Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature 343:49–51

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Stephens G (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273

    Article  Google Scholar 

  • Svensson G, Tjernström M, Koracin D (2000) The sensitivity of a stratocumulus transition: model simulations of the astex first lagrangian. Bound Layer Meteor 95:57–90

    Article  Google Scholar 

  • Washington W, Weatherly J, Meehl G, Semtner A Jr, Bettge T, Craig A, Strand W Jr, Arblaster J, Wayland V, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Article  Google Scholar 

  • Weare BC (1999) Combined satellite- and surface-based observations of clouds. J Clim 12:897–913

    Article  Google Scholar 

  • Weare BC (2004) A comparison of AMIP II model cloud layer properties with ISCCP D2 estimates. Clim Dyn 22:281–292

    Article  Google Scholar 

  • Weare BC, Mokhov II, Amip Modeling Groups (1996) Evaluation of the vertical structure of zonally averaged cloudiness and Its variability in the atmospheric model intercomparison project. J Clim 9:3419–3431

    Article  Google Scholar 

  • Webb M, Senior C, Bony S, Morcrette J (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922

    Article  Google Scholar 

  • Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38

    Article  Google Scholar 

  • Wei Y, Doutriaux M, Séze G, Le Treut H, Desbois M (1996) A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Clim Dyn 12:389–401

    Article  Google Scholar 

  • Williams KD, Tselioudis G (2007) Gcm intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29:231–250. doi:10.1007/s00382-007-0232-2

    Article  Google Scholar 

  • Williams KD, Senior CA, Mitchell JFB (2001) Transient climate change in the Hadley centre models: the role of physical processes. J Clim 14:2659–2674

    Article  Google Scholar 

  • Williams K, Senior C, Slingo A, Mitchell J (2005) Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes. Clim Dyn 24:701–719. doi:10.1007/s00382-004-0512-z

    Article  Google Scholar 

  • Wyant M, Bretherton C, Bacmeister J, Kiehl J, Held I, Zhao M, Klein S, Soden B (2006) A comparison of low-latitude cloud properties and their response to climate change in three agcms sorted into regimes using mid-tropospheric vertical. Clim Dyn 27:261–279. doi:10.1007/s00382-006-0138-4

    Article  Google Scholar 

  • Yu Y, Zhang X, Guo Y (2004) Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–445

    Article  Google Scholar 

  • Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, Del Genio AD, Hack JJ, Loeb NG, Lohmann U, Minnis P, Musat I, Pincus R, Stier P, Suarez MJ, Webb MJ, Wu JB, Xie SC, Yao M-S, Zhang JH (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110(D15):S02. doi:10.1029/2004JD005021

    Google Scholar 

Download references

Acknowledgments

Thanks go to Frida Bender for good discussions and critical comments. The ERBE-data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. The climatological monthly mean ISCCP D2 data were obtained from the International Satellite Cloud Climatology Project web site http://isccp.giss.nasa.gov maintained by the ISCCP research group at the NASA Goddard Institute for Space Studies, New York, NY on March, 2005. ICOADS data provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, J., Svensson, G. & Rodhe, H. Cloud radiative forcing of subtropical low level clouds in global models. Clim Dyn 30, 779–788 (2008). https://doi.org/10.1007/s00382-007-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0322-1

Keywords

Navigation