Skip to main content

Advertisement

Log in

Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol 1:243–274

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112

    Article  PubMed  Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, Dällenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394:739–743

    Article  Google Scholar 

  • Blunier T, Schwander J, Chappellaz J, Parrenin F, Barnola JM (2004) What was the surface temperature in central Antarctica during the Last Glacial Maximum? Earth Planet Sci Lett 218:379–388

    Article  Google Scholar 

  • Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267: 1005–1010

    Article  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Article  Google Scholar 

  • Broecker WS (1998) Paleocean circulation during the last glaciation: a bipolar seesaw? Paleoceanography 13(2):119–121

    Article  Google Scholar 

  • Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13(4):352–364

    Article  Google Scholar 

  • Brook EJ, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273: 1087–1091

    Article  PubMed  Google Scholar 

  • Brook EJ, Harder S, Serveringhaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycles 14:559–572

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) A coupled photosynthesis—stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Article  Google Scholar 

  • Cowling SA, Field CB (2003) Environmental control of leaf area production:Implications for vegetation and land-surface modeling. Global Biogeochem Cycles 17:1007. doi:10.1029/2002GB001915

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models. Global Change Biol 7:357–375

    Article  Google Scholar 

  • Crowley TJ (1992) North Atlantic deep water cools the southern hemisphere. Paleoceanography 7:489–497

    Article  Google Scholar 

  • Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF, Kristinsdottir PM, Reeh N (1982) A new Greenland deep ice core. Science 218:1273–1277

    Article  Google Scholar 

  • Dargaville RJ, Heimann M, McGuire AD, Prentice IC, C. I, Kicklighter DW, Joos F, Clein JS, Esser G, Foley J, Kaplan J, Meier RA, Melillo JM, Moore B, Ramankutty N, Reichenau T, Schloss A, Sitch S, Tian H, Williams L, Wittenberg U (2002) Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles 16:1092. doi:10.1029/2001GB001426

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179

    Article  PubMed  Google Scholar 

  • Ewen TL, Weaver AJ, Schmittner A (2004) Modelling carbon cycle feedbacks during abrupt climate change. Q Sci Rev 23:431–448

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Foley J (1995) An equilibrium model of the terrestrial carbon budget. Tellus 47B:310–319

    Google Scholar 

  • Gent (2001) Will the North Atlantic Ocean thermohaline circulation weaken during the 21st century? Geophys Res Lett 28:1023–1026

    Article  Google Scholar 

  • Gerber S, Joos F, Brügger P, Stocker TF, Mann ME, Sitch S, Scholze M (2003) Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2. Climate Dynam 20:281–299

    Google Scholar 

  • Gerber S, Joos F, Prentice IC (2004) Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2. Global Change Biol 10:1223–1239. doi:10.1111/j.1365–2486.2004.00807.x

    Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355

    Article  Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 103 to 105-year time resolution. J Geophys Res 102:26455–26470

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3:An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10:693–709

    Article  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Q Res 29:142–152

    Article  Google Scholar 

  • Hemming SR (2004) Heinrich events:massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42:RG1005. doi:10.1029/2003RG000128

  • Hewitt CD, Senior CA, Mitchell JFB (2001) The impact of dynamics sea-ice on the climatology and climate sensitivity of a GCM:A study of past, present, and future climates. Climate Dynamics 17:655–668

    Article  Google Scholar 

  • Hewitt CD, Stouffer RJ, Broccoli AJ, Mitchell JFB, Valdes PJ (2003) The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Climate Dynam 20:203–218

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  PubMed  Google Scholar 

  • Indermühle A, Monnin E, Stauffer B, Stocker TF (2000) Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys Res Lett 27:735–738

    Article  Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC Jr (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235: 429–434

    Article  PubMed  Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recoreded in a new Greenland ice core. Nature 359: 311–313

    Article  Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Dansgaard W, Gundestrup N (1995) Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B:624–629

    Article  Google Scholar 

  • Joos F, Bruno M, Fink R, Siegenthaler U, Stocker TF (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B(3):397–417

    Article  Google Scholar 

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulations of Holocenic atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem Cycles 18:GB2002. doi:10.1029/2003GB002156

  • Jouzel J, Vimeux F, Caillon N, Delaygue G, Hoffmann G, Masson-Delmotte V, Parrenin F (2003) Magnitude of isotopics/temperature scaling for interpretation of central Antarctic ice cores. J Geophys Res 108(D12):4361. doi:10.1029/2002JD002677

    Google Scholar 

  • Kaplan JO, Prentice IC, Knorr W, Valdes PJ (2002) Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophys Res Lett 29:2074. doi:10.1029/2002GL015230

  • Knutti R, Stocker TF, Wright DG (2000) The effects of subgrid-scale parametrizations in a zonally averaged ocean model. J Phys Oceanogr 30:2738–2752

    Article  Google Scholar 

  • Knutti R, Flückiger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through continental freshwater discharge and ocean circulation. Nature 430:851–856

    Article  PubMed  Google Scholar 

  • Köhler P, Fischer H (2004) Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition. Global Planet Change 43:33–55. doi:10.1016/j.gloplacha. 2004.02.005

    Google Scholar 

  • Köhler P, Fischer H, Munhoven G, Zeebe RE (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochem Cycles (in press), doi:10.1029/2004GB002345

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Landais A, Caillon N, Goujon C, Grachev AM, Barnola JM, Chappellaz J, Jouzel J, Masson-Delmotte V, Leuenberger M (2004) Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet Sci Lett 225:221–232

    Article  Google Scholar 

  • Lang C, Leuenberger M, Schwander J, Johnsen S (1999) 16°C rapid temperature variation in central Greenland 70,000 years ago. Science 286:934–937

    Article  PubMed  Google Scholar 

  • Leemans R, Cramer WP (1991) The IIASA climate database for land areas on a grid with 0.5o resolution, vol. RR-91-18 of Research Reports. International Institute for Applied Systmes Analysis, Laxenburg, Austria

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  PubMed  Google Scholar 

  • Marchal O, Stocker TF, Joos F (1998) Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content. Paleoceanography 13(3):225–244

    Article  Google Scholar 

  • Marchal O, Stocker TF, Joos F (1999a) On large-scale physical and biogeochemical responses to abrupt changes in the Atlantic thermohaline circulation. In:Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of millennial-scale global climate change Vol 112 of Geophysical Monograph, American Geophysical Union, Washington, DC, USA, pp 263–284

  • Marchal O, Stocker TF, Joos F, Indermühle A, Blunier T, Tschumi J (1999b) Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Climate Dynam 15:341–354

    Article  Google Scholar 

  • McGuire AD, Sitch S, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Wittenberg U (2001) The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992:an analysis with four process-based ecosystem models. Global Biogeochem Cycles 15:183–206

    Article  Google Scholar 

  • McManus JF, Francois R, Gheradi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  PubMed  Google Scholar 

  • Meese DA, Gow A, Alley R, Zielinski G, Grootes P, Ram M, Taylor K, Mayewski P, Bolzan J (1997) The Greenland Ice Sheet Project 2 depth-age scale: methods and results. J Geophys Res 102: 26411–26423

    Article  Google Scholar 

  • Mikolajewicz U (1996) A meltwater-induced collapse of the ’conveyor belt’ thermohaline circulation and its influence on the distribution of Δ14C and δ18O in the oceans, vol. 189 of Technical Report. Max Planck Institute for Meteorology, Hamburg, Germany

    Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Article  PubMed  Google Scholar 

  • Monnin E, Steig EJ, Siegenthaler U, Kawamura K, Schwander J, Stauffer B, Stocker TF, Morse DL, Barnola JM, Bellier B, Raynaud D, Fischer H (2004) Evidence for sustantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet Sci Lett 224: 45–54

    Article  Google Scholar 

  • Monteith JL (1995) Accomodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability:Development of 1901–95 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Oeschger H, Beer J, Siegenthaler U, Stauffer B (1984) Late glacial climate history from ice cores. In:Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. vol. 29 of Geophysical Monograph, American Geophysical Union, Washington, DC, USA, pp 299–306

  • Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367

    Article  Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265:195–201

    Article  Google Scholar 

  • Peteet D (1995) Global Younger Dryas? Q Inter 28: 93–104

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model:HadAM3. Climate Dynam 16:123–146

    Article  Google Scholar 

  • Prentice IC, Jolly D, participants B (2000) Mid-Holocene and glacial-maximum vegetation geography of northern continents and Africa. J Biogeogr 27:507–519

    Article  Google Scholar 

  • Rashid H, Hesse R, Piper DJW (2003) Evidence for an additional Henrich event between H5 and H6 in the Labrador Sea. Paleoceanography 18:1077, doi:10.1029/2003PA000913

  • Röthlisberger R, Bigler M, Wolff EW, Monnin E, Joos F, Hutterli M (2004) Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilization. Geophys Res Lett 31: L16207. doi:10.1029/2004GL020338

  • Sabine CL, Heimann M, Artaxo P, Bakker DCE, Arthur CT, Field CB, Gruber N, Quéré CL, Prinn RG, Richey JE, Lankao PR, Sathaye JA, Valentini R (2004) Current status and past trends of the global carbon cycle. In:Field CB, Raupach MR (eds) The global carbon cycle:integrating humans, climate, and the natural world. Island Press, Washington, Covelo, London, pp 17–44

    Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in East Atlantic deepwater circulation over the last 30,000 years:eight time slice reconstruction. Paleoceanography 99: 209–268

    Article  Google Scholar 

  • Scholze M (2003) Model studies on the response of the terrestrial carbon cycle to climate change and variability. PhD Thesis, Max Planck Institute for Meteorology, Hamburg, Germany

  • Scholze M, Kaplan JO, Knorr W, Heimann M (2003a) Climate and interannual variability of the atmosphere-biosphere 13CO2 flux. Geophys Res Lett 30:1097, doi:10.1029/2002GL015631

    Google Scholar 

  • Scholze M, Knorr W, Heimann M (2003b) Modelling terrestrial vegetation dynamics and carbon cycling for an abrupt climate change event. Holocene 13:327–333

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  PubMed  Google Scholar 

  • Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44B:186–207

    Article  Google Scholar 

  • Sitch S (2000) The role of vegetation dynamics in the control of atmospheric CO2 content. PhD Thesis, Department of Ecology, Lund University, Lund, Sweden

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan OJ, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9: 161–185

    Article  Google Scholar 

  • Skinner LC, Shackleton NJ (2004) Rapid transient changes in northeast Atlantic deep water ventilation age across Termination I. Paleoceanography 19:PA2005. doi:10.1029/2003PA000983

  • Smith HJ, Fischer H, Wahlen M, Mastroianni D, Deck B (1999) Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400:248–250

    Article  PubMed  Google Scholar 

  • Stauffer B, Blunier T, Dällenbach A, Indermühle A, Schwander J, Stocker TF, Tschumi J, Chappellaz J, Raynaud D, Hammer CU, Claussen HB (1998) Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period. Nature 392:59–62

    Article  Google Scholar 

  • Stenni B, Jouzel J, Masson-Delmotte V, Röthlisberger R, Castellano E, Cattani O, Falourd S, Johnsen SJ, Longinelli A, Sachs JP, Selmo E, Souchez R, Steffensen JP, Udisti R (2004) A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica). Earth Planet Sci Lett 217: 183–195

    Article  Google Scholar 

  • Stocker TF (1998) The seesaw effect. Science 282:61–62

    Article  Google Scholar 

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18:1087. doi:10.1029/2003PA000920

    Google Scholar 

  • Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics:coupling fire into a dynamic global vegetation model. Global Ecol Biogeogr 10:661–677

    Article  Google Scholar 

  • Timmermann A, Goosse H (2004) Is the wind stress forcing essential for the meridional overturing circulation? Geophys Res Lett 31: L04303. doi:10.1029/2003GL018777

  • Timmermann A, Gildor H, Schulz M, Tziperman E (2003) Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J Climate 16:2569–2585

    Article  Google Scholar 

  • Timmermann A, Justino F, Jin FF, Krebs U, Goosse H (2004) Surface temperature control in the north and tropical Pacific during the Last Glacial Maximum. Climate Dynam 23:353–370

    Article  Google Scholar 

  • Voelker AHL et al. (2002) Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3:a database. Q Sci Rev 21:1185–1212

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paul Valdes for providing output from his time slice simulations with the Hadley Centre model. Comments by Kuno Strassmann and the reviews of Michel Crucifix and two anonymous reviewers are appreciated. This study was performed during a three months visit of PK at the Department of Climate and Environmental Physics of the University of Bern. Funding by the Swiss National Science Foundation and by the German Ministry of Education and Research (BMBF) through the German climate research program DEKLIM (project RESPIC) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Köhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, P., Joos, F., Gerber, S. et al. Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation. Clim Dyn 25, 689–708 (2005). https://doi.org/10.1007/s00382-005-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0058-8

Keywords

Navigation