Skip to main content

Advertisement

Log in

Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Tropical land cover change experiments with fixed sea-surface temperatures (SSTs) and with an interactive ocean are compared to assess the relevance of including the ocean system in sensitivity studies to land surface conditions. The results show that the local response to deforestation is similar with fixed and simulated SSTs. Over Amazonia, all experiments simulate a comparable decrease in precipitation and no change in moisture convergence, implying that there is only a change in local water recycling. Over Africa, the impact on precipitation is not identical for all experiments; however, the signal is smaller than over Amazonia and simulations of more than 50 years would be necessary to statistically discriminate the precipitation change. We observe small but significant changes in SSTs in the coupled simulation in the tropical oceans surrounding the deforested regions. Impacts on mid and high latitudes SSTs are also possible. As remote impacts to deforestation are weak, it has not been possible to establish possible oceanic feedbacks to the atmosphere. Overall, this study indicates that the oceanic feedback to land surface sensitivity studies is of second importance, and that the inclusion of the oceanic system will require ensembles of long climate simulations to properly take into account the low frequency variability of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alcamo J, Leemans R, Kreileman E (1998) Global modelling of environmental change: an overview of IMAGE 2.1. In: Global change scenarios of the 21st century. Elsevier, Amsterdam, pp 3–96

    Google Scholar 

  • Bonan G, Pollard D, Thompson S (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Côté J, Staniforth A (1988) A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon Weather Rev 116(10):2003–2012

    Article  Google Scholar 

  • Charney J (1975) Dynamics of deserts and drought in the Sahel. Q J Roy Meteor Soc 101:193–202

    Article  Google Scholar 

  • Costa M, Foley J (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34

    Article  Google Scholar 

  • Deardorff J (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83(C4):1889–1903

    Google Scholar 

  • Delire C, Behling P, Coe M, Foley J, Jacob R, Butzbach J, Liu Z, Vavrus S (2001) Simulated response of the atmosphere-ocean system to deforestation in the Indonesian Archipelago. Geophys Res Lett 28(10):2081–2084

    Article  Google Scholar 

  • Déqué M (1999) Documentation ARPEGE-Climat. Technical report. Available from Centre National de Recherches Meteorologiques, Météo-France, Toulouse, France

  • Hahmann A, Dickinson R (1997) RCCM2-BATS model over tropical south America: applications to tropical deforestation. J Clim 10:1944–1964

    Article  Google Scholar 

  • IMAGE-team (2001) The IMAGE2.2 implementation of the SRES scenarios: a comprehensive analysis of emissions, climate change and impacts in the 21st century. Main disc National Institue for Public Health and the Environment (RIVM), Bilthoven, the Netherlands

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina peninsula. J Hydrol 2:51–70

    Google Scholar 

  • Lean J, Rowntree P (1997) Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Clim 10:1216–1235

    Article  Google Scholar 

  • Louis JF, Tiedke M, Geleyn JF (1982) A short history of the operational PBL-parameterization at ECMWF. In: ECMWF Workshop Planetary Boundary Layer Parameterization. ECMWF, Reading, UK, pp 59–80

  • Madec G, Delecluse P, Imbard M, Lévy C (1997) OPA version 8.0 Ocean General Circulation Model Reference Manual. Technical report. Available from Laboratoire d’Océanographie Dynamique et de Climatologie, IPSL, Paris 75252, France

  • Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1 km resolution in meteorological and climate models. J Clim 16(9):1261–1282

    Google Scholar 

  • Maynard K, Royer J (2004) Effects of realistic land-cover change on a greenhouse warmed African climate. Clim Dyn 22(4):343–358. DOI: 10.1007/s00382-003-0371-z

    Google Scholar 

  • Mitchell J, TC J, Gregory J, Tett S (1995) Climate response to increasing levels of greenhouse gases and sulfate aerosols. Nature 376:501–504

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118:847–873

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  Google Scholar 

  • Polcher J, Laval K (1994) The impact of African and Amazonian deforestation on tropical climate. J Hydrol 155:389–405

    Article  Google Scholar 

  • Reynolds R (1988) A real-time global sea-surface temperature analysis. J Clim 1:75–86

    Article  Google Scholar 

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Royer JF, Cariolle D, Chauvin F, Déqué M, Douville H, Hu R, Planton S, Rascol A, Ricard JL, Salas y Melia D, Sevault F, Simon P, Somot S, Tyteca S, Terray L, Valcke S (2002) Simulation des changements climatiques au cours du XXIème siècle incluant l’ozone atmosphérique. C R Geosci 334:147–154

    Article  Google Scholar 

  • Sud Y, Walker G, Kim J, Liston G, Sellers P, Lau W (1996) Biogeophysical consequences of a tropical deforestation scenario: a GCM simulation study. J Clim 9:3225–3247

    Article  Google Scholar 

  • Voldoire A, Royer J (2004) Tropical deforestation and climate variability. Clim Dyn 22(8):857–874 DOI:10.1007/s00382-004-0423-z

    Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation J Geophys Res 107(D20). DOI: 10.1029/2001JD000717

  • Xie P, Arkin P (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Zeng N, Dickinson R, Zeng X (1996) Climatic impact of Amazon deforestation—a mechanistic model study. J Clim 9:859–883

    Article  Google Scholar 

  • Zhang H, Henderson-Sellers A, McGuffie K (1996) Impacts of tropical deforestation. Part II: the role of large-scale dynamics. J Clim 9:2498–2521

    Article  Google Scholar 

  • Zhang H, Henderson-Sellers A, McGuffie K (2001) The compounding effects of tropical deforestation and greenhouse warming on climate. Clim Change 49:309–338

    Article  Google Scholar 

  • Zhao M, Pitman A, Chase T (2001) The impact of land cover change on the atmospheric circulation. Clim Dyn 17:467–477

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sophie Tyteca for her assistance in the numerical experiments, Hervé Douville for constructive suggestions to revise the manuscript, and Michiel Schaeffer and Bas Eickhout from the IMAGE Team at RIVM for assistance on the IMAGE 2.2 database. Thanks are also due to Jan Polcher for helpful suggestions, and anonymous reviewers for constructive comments. Financial support from the French Programme National d’Etude de la Dynamique du Climat (PNEDC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Voldoire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voldoire, A., Royer, JF. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Climate Dynamics 24, 843–862 (2005). https://doi.org/10.1007/s00382-005-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0014-7

Keywords

Navigation