Skip to main content

Advertisement

Log in

Sensitivity of a general circulation model to land surface parameters in African tropical deforestation experiments

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

During the last two decades, several land surface schemes for use in climate, regional and/or mesoscale, hydrological and ecological models have been designed. Incorrect parametrization of land-surface processes and prescription of the surface parameters in atmospheric modeling, can result in artificial changes of the horizontal gradient of the sensible heat flux. Thus, an error in horizontal temperature gradient within the lower atmosphere may be introduced. The reliability of the model depends on the quality of boundary layer scheme implemented and its sensitivity to the bare soil and vegetation parameters. In this study, a series of sensitivity experiments has been conducted over broad time scales, using a version of the ARPEGE Climate Model coupled to the ISBA land surface scheme in order to investigate model sensitivity to separate changes in land surface parameters over Africa. Effects of perturbing vegetation cover, distribution of soil depth, albedo of vegetation, roughness length, leaf area index and minimum stomatal resistance were explored by using a simple statistical analysis. Identifying which parameters are important in controlling turbulent energy fluxes, temperature and soil moisture is dependent on which variables are used to determine sensibility, which type of vegetation and climate regime is being simulated and the magnitude and sign of the parameter change. This study does not argue that a particular parameter is important in ISBA, rather it shows that no general ranking of parameters is possible. So, it is essential to specify all land surface parameters with greater precision when attempting to determine the climate response to modification of the land surface. The implication of ISBA being sensitive to parameters that cannot be validated suggests that there will always be considerable doubt over the predictive quality of land-surface schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

References

  • Acs F (1994) A coupled soil-vegetation scheme: description, parameters, validation, and sensitivity studies. J Appl Meteorol 33: 268–284

    Article  Google Scholar 

  • Beljaars AC, Viterbo P (1994) Sensitivity of winter evaporation to the formulation of aerodynamic resistance in the ECMWF model. Bound Layer Meteorol 71: 135–149

    Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect a sensitivity study with two general circulation models. Tellus 47: 281–300

    Article  Google Scholar 

  • Bougeault P (1985) A simple parametrization of the large-scale effects of cumulus convection. Mon Weather Rev 113: 2108-2121

    Article  Google Scholar 

  • Braud I, Noilhan J, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare-ground surface heat and water exchanges under dry conditions: observations and parametrization. Bound Layer Meteorol 66: 173–200

    Google Scholar 

  • Burke EJ, Shuttleworth WJ, Yang ZL, Mullen SL, Arain MA (2000) The impact of parametrization of heterogeneous vegetation on the modeled large-scale circulation in CCM3-BATS. Geophys Res 27: 397-400

    Google Scholar 

  • Charney JG (1975) Dynamics of deserts and droughts in the Sahel. Q J R Meteorol Soc l0l: 193–202

    Article  Google Scholar 

  • Charney JG, Quik WJ, Chow S-H, Kornfield (1977) A comparative study of the effects of albedo change on drought in semi-arid regions, J Atmos Sci 34: 1366–1385

  • Chase TN, Pielke RA, Kittel TGF, Nemani R, Running SW (1996) Sensitivity of a general circulation model to changes in leaf area index. J Geophys Res 101: 7393–7408

    Article  Google Scholar 

  • Collins D, Avissar R (1994) An evaluation with the Fourier Amplitude Sensitivity Test (FAST) of which land-surface parameters are of greatest importance for atmospheric modelling, J Clim 7: 681–703

  • Cook KH (1994) Mechanisms by which surface drying perturbs tropical precipitation fields. J Clim 7: 400–413

    Article  Google Scholar 

  • Cook KH (1997) Large-scale atmospheric dynamics and Sahelian precipitation. J Clim 10: 1137–1152

    Article  Google Scholar 

  • Costa MH, Foley JA (1999) Combined effects of deforestation and doubled atmospheric C02 concentrations on the climate of Amazonia. J Clim 13: 18–34

    Article  Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res – Oceans 83: 1889–1903

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model, a contribution to the French community climate modelling. Clim Dyn 10: 249–266

    Article  Google Scholar 

  • Dickinson RE (1984) Modeling evapotranspiration for three-dimensional global climate models. Climate processes and climate sensitivity. Geophys Monogr 29, Am Geophys Union: 58–72

  • Dirmeyer PA, Shukla J (1994) Albedo as a modulator of climate response to tropical deforestation. J Geophys Res 99: 20 863–20 877

    Article  Google Scholar 

  • Douville H, Royer JF, Mahfouf JF (1995a) A new snow parametrization for the Météo-France climate model. Part I: validation in stand-alone experiments. Clim Dyn 12: 21–35

    Article  Google Scholar 

  • Douville H, Royer JF, Mahfouf JF (1995b) A new snow parametrization for the Meteo-France climate model. Part II: validation in a 3D GCM experiment. Clim Dyn 12: 37–52

    Article  Google Scholar 

  • Eidenshink JC, Faudeen JL (1994) The 1 km AVHRR global land data set-first stages in implementation. Int J Remote Sensing 15: 3,443–3,462

    Google Scholar 

  • Garratt JR, Hicks BB (1973) Momentum, heat and water vapour transfers to and from natural and artificial surfaces. Q J R Meteorol Soc 99: 680–687

    Article  Google Scholar 

  • Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res 104: 19,491–19,503

    Article  Google Scholar 

  • Hahmann AN, Dickinson R (1997) RCCM2-BATS model over tropical South America: application to tropical deforestation. J Clim 10: 1944–1964

    Article  Google Scholar 

  • Hahmann AN, Dickinson R (2001) A fine-mesh approach for general circulation model and its impact on regional climate. J Clim 14: 1634–1646

    Article  Google Scholar 

  • Hansen MC, DeFries RS, R TJG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sensing 21: 1331–1364

    Article  Google Scholar 

  • Henderson-Sellers A (1992) Assessing the sensitivity of a land surface scheme to parameters used in tropical-deforestation experiments. Q J R Meteorol Soc 118:1101–1116

    Article  Google Scholar 

  • Henderson-Sellers A, Gornitz V (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim Change 6: 231–257

    Google Scholar 

  • Henderson-Sellers A, McGuffie K (1995) Global climate models and ‘dynamic’ vegetation. Global Change Biol 1: 63–75

    Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation: modelling local to regional-scale climate change. J Geophys Res 98: 7289–7315

    Google Scholar 

  • Hu Z, Islam S (1996) A method to evaluate the importance of interactions between land surface and atmosphere. Water Resour Res 32: 2497–2505

    Article  Google Scholar 

  • Jacobs CMJ, De Bruin HAR (1992) The sensitivity of regional transpiration to land-surface characteristics: significance of feedback. J Clim 5: 683–698

    Article  Google Scholar 

  • Jacquemin B, Noilhan J (1990) Sensitivity study and validation of a land surface parametrization using the HAPEX-MOBILHY data set. Bound Layer Meteorol 52: 93–134

    Google Scholar 

  • Kim CP, Entekhabi D (1998) Feedbacks in the land-surface and mixed-layer energy budgets. Bound Layer Meteorol 88: 1–21

    Article  Google Scholar 

  • Kleidon A, Heimann M (2000) Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for amazonian deforestation. Clim Dyn 16: 183–199

    Article  Google Scholar 

  • Koeppe CE, De Long GC (1958) Weather and climate. McGraw-Hill, New York

  • Lean J, Rowntree P (1997) Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Clim 10: 1216–1235

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17: 187–202

    Google Scholar 

  • Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the operational PBL-parametrization at ECMWF. ECMWF Workshop Planetary Boundary Layer Parametrization, ECMWF, Reading, UK, pp 59–80

  • Mahfouf JF, Manzi AO, Noilhan J, Giordani H, DéquéM (1995) The land surface scheme ISBA within the METEO-FRANCE climate model ARPEGE. Part 1, implementation and preliminary results. J Clim 8: 2039–2057

    Article  Google Scholar 

  • Margulis SA, Entekhabi D (2001) A coupled land surface-boundary layer model and its adjoint. J Hydrometeorol 2: 274–296

    Article  Google Scholar 

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of the surface layer flux-profile relationships using different roughness length values for heat and momentum. Bound Layer Meteorol 72: 331–344

    Google Scholar 

  • Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2002) Ecoclimap- a global database of land surface parameters at 1km resolution in meteorological and climate models. J Clim 16: 1261–1282

    Google Scholar 

  • Maynard K, Royer JF (2003) Effects of “realistic” land-cover change on a greenhouse-warmed African climate. Clim Dyn 22: 343–358

    Google Scholar 

  • Milly PCD, Dunne KA (1994) Potential evaporation and soil moisture in general circulation models. J Clim 3: 209–226

    Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parametrizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118: 847–873

    Article  Google Scholar 

  • Niyogi DS, Raman S, Alapaty K, Han J (1997) A dynamic statistical experiment for atmospheric interactions. Environ Mod Assess 2: 307–322

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parametrization of land surface processes for meteorological models. Mon Weather Rev 117: 536–549

    Article  Google Scholar 

  • Pitman AJ (1994) Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. J Clim 7: 1856–1869

    Article  Google Scholar 

  • Polcher J, Laval K (1994) The impact of African and Amazonian deforestation on tropical climate. J Hydrol 155: 389–405

    Article  Google Scholar 

  • Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1: 75–86

    Article  Google Scholar 

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophyicae 11: 1095–1115

    Google Scholar 

  • Rind D (1984) The influence of vegetation on the hydrologic cycle in a global climate model. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity AGU Geophys. Monograph 29 pp. 73–91, American Geophysical Union. Washington, D.C., USA

  • Shukla J, Mintz Y (1982) The influence of land-surface evapotranspiration on the earth’s climate. Science 215: 1498–1501

    Google Scholar 

  • Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Bound Layer Meteorol 59: 1–34

    Google Scholar 

  • Sud YC, Fennessy MJ (1982) A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J Climatol 2: 105–125

    Google Scholar 

  • Sud YC, Smith WE (1985) Influence of local land surface processes on the Indian Monsoon: a numerical study. J Clim Appl Meteorol 4: 1015–1036

    Article  Google Scholar 

  • Sud YC, Molod A (1988) A GCM simulation study of the influence of Sahara evapotranspiration and surface-albedo anomalies on July circulation and rainfall. Mon Weather Rev 116: 2388–2400

    Article  Google Scholar 

  • Sud YC, Shukla J, Mintz Y (1988) Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J Appl Meteorol 27: 1036–1054

    Article  Google Scholar 

  • Sud YC, Lau KM, Walker GK, Kim JH (1995) Understanding biosphere-precipitation relationships: theory, model similations and logical inferences. Mausam 46: 1–14

    Google Scholar 

  • Verhoff A, Alen SJ, Lloyd CR (1999) Seasonal variation of surface energy balance over two sahelian surfaces. Int J Climatol 19: 1267–1277

    Article  Google Scholar 

  • Webb RS, Rosenzweig CE, Levine ER (1991) A global data set of soil particle size properties. Technical Report 4286, NASA, GISS, New York

  • Wetzel PJ, Chang JT (1988) Evapotranspiration from a nonuniform surface: a first approach for short term numerical weather prediction. Mon Weather Rev 116: 600–621

    Article  Google Scholar 

  • Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5: 119–143

    Google Scholar 

  • Wilson MF, Henderson-Sellers A, Dickinson RE, Kennedy PJ (1987a) Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics. J Appl Meteorol 26: 341–362

    Article  Google Scholar 

  • Wilson MF, Henderson-Sellers A, Dickinson RE, Kennedy PJ (1987b) Investigation of the sensitivity of the land-surface parametrization of the NCAR community climate model in regions of tundra vegetation. J Climatol 7: 319–343

    Google Scholar 

  • Xie P, Arkin PA (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates and numerical model predictions. J Clim 9: 840–858

    Article  Google Scholar 

  • Xue Y, Bastable HG, Dirmeyer HG, Sellers PJ (1996) Sensitivity of simulated surface fluxes to changes in land surface parametrizations: a study using ABRACOS data. J App Meteorol 35: 386–401

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the IMAGE Team at RIVM for providing the IMAGE 2.2 simulations on CD-Rom, particularly Michiel Schaeffer and Bas Eickhout. We wish to thank Michel Déqué, Robin Clark and Hervé Douville for helpful comments and suggestions, and Fabrice Chauvin and Sophie Tyteca for their support. The software package GrADS (http://grads.iges.org//grads/) was used to draw the figures. This study has been supported by a grant from the European Commission Fifth Framework Programme (PROMISE contract EVK2-CT-1999-00022) and by the French “Programme National d’Etude de la Dynamique du Climat” (PNEDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maynard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maynard, K., Royer, JF. Sensitivity of a general circulation model to land surface parameters in African tropical deforestation experiments. Climate Dynamics 22, 555–572 (2004). https://doi.org/10.1007/s00382-004-0398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0398-9

Keywords

Navigation