Skip to main content

Advertisement

Log in

Neuroprotective effects of icariin in neonatal hypoxia-ischemic brain damage via its anti-apoptotic property

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Neonatal hypoxic-ischemic brain damage (HIBD) is a brain disease that is caused by perinatal asphyxia. Icariin (ICA), which is an active component of Epimedii (a Chinese medicinal herb), has been verified to demonstrate a wide range of therapeutic effects, such as alleviating various kinds of brain injury.

Objective

The current study aims to examine the neuroprotective effects of ICA on neonatal HIBD in mice.

Materials and methods

A modified version of the Rice-Vannucci method was performed to establish neonatal HIBD in 7-day-old mouse pups that were pretreated with ICA or vehicle. The infarct volume was measured, and behavioral tests were conducted to assess the protective effects of ICA on the neonatal brain and to evaluate functional recovery after injury. TUNEL staining was used to detect cell apoptosis, and the levels of cleaved caspase-3 and phosphorylated protein kinase B (Akt) were determined by using Western blot.

Results

We showed that pretreatment with ICA could significantly reduce brain damage, improve neurobehavioral outcomes, and suppress apoptotic cell death following HI injury. ICA reversed the HI-induced reduction in phosphorylated Akt and activation of cleaved caspase-3.

Conclusion

The results demonstrate that ICA exerts potential neuroprotective effects on neonatal HIBD, which may be mediated by its anti-apoptotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nair J, Kumar VHS (2018) Current and emerging therapies in the management of hypoxic ischemic encephalopathy in neonates. Children (Basel) 5(7):E99

    Google Scholar 

  2. Pappas A, Korzeniewski SJ (2016) Long-term cognitive outcomes of birth asphyxia and the contribution of identified perinatal asphyxia to cerebral palsy. Clin Perinatol 43(3):559–572

    Article  PubMed  Google Scholar 

  3. Shah GS, Singh R, Das BK (2005) Outcome of newborns with birth asphyxia. JNMA J Nepal Med Assoc 44:44–46

    CAS  PubMed  Google Scholar 

  4. McAdams RM, Juul SE (2016) Neonatal encephalopathy: update on therapeutic hypothermia and other novel therapeutics. Clin Perinatol 43(3):485–500

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y, Yu Q, Peng Z (2016) Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 8(4):1910–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiong D, Deng Y, Huang B, Yin C, Liu B, Shi J, Gong Q (2016) Icariin attenuates cerebral ischemia-reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int Immunopharmacol 30:157–162

    Article  CAS  PubMed  Google Scholar 

  7. Mo ZT, Li WN, Zhai YR, Gong QH (2016) Icariin attenuates OGD/R-induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy in PC12 cells. Evid Based Complement Alternat Med 2016:4343084

    PubMed  PubMed Central  Google Scholar 

  8. Wei Z, Deng X, Hong M, Su Q, Liu A, Huang Y, Yu Q, Peng Z (2015) Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int J Clin Exp Med 8(11):20188–20197

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141

    Article  PubMed  Google Scholar 

  10. Manabat C, Han BH, Wendland M, Derugin N, Fox CK, Choi J, Holtzman DM, Ferriero DM (2003) Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke 34(1):207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao H, Sapolsky RM (2006) Steinberg GK. Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34(3):249–270

    Article  CAS  PubMed  Google Scholar 

  12. Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao YX, Dong JC (2010) Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur J Pharmacol 642(1–3):146–153

    Article  CAS  PubMed  Google Scholar 

  13. Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z (2019) An outline for thepharmacological effect of icariin in the nervous system. Eur J Pharmacol 842:20–32

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Zhou QX, Shi JS (2005) Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion. Chin Med J 118(19):1637–1643

    CAS  PubMed  Google Scholar 

  15. Zheng M, Qu L, Lou Y (2008) Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat. Phytother Res 22(5):597–604

    Article  CAS  PubMed  Google Scholar 

  16. Jia JM, Peng C, Wang Y, Zheng J, Ge WP (2018) Control of occlusion of middle cerebral artery in perinatal and neonatal mice with magnetic force. Mol Brain 11(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xu B, Xiao AJ, Chen W, Turlova E, Liu R, Barszczyk A, Sun CLF, Liu L, Tymianski M, Feng ZP (2016) Neuroprotective effects of a PSD-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 53(9):5962–5970

    Article  CAS  PubMed  Google Scholar 

  18. Xiao AJ, Chen W, Xu B, Liu R, Turlova E, Barszczyk A, Sun CL, Liu L, Deurloo M, Wang GL (2014) Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs 13(1):29–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hagberg H, Mallard C, Rousset CI (2009) Apoptotic mechanisms in the immature brain: involvement of mitochondria. J Child Neurol 24(9):1141–1146

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song YH, Cai H, Gu N, Qian CF, Cao SP, Zhao ZM (2011) Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol 63(4):541–549

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wang XM (2008) Progress of pharmacological research on icariin. Zhongguo Zhong Yao Za Zhi 33(23):2727–2732

    CAS  PubMed  Google Scholar 

  22. Pruitt DG, Bullock KM, Banks WA, Jelliss PA (2017) Development of rhenacarborane complexes as central nervous system (CNS) drug delivery agents. Inorg Chim Acta 466:139–144

    Article  CAS  Google Scholar 

  23. Zhao YJ, Nai Y, Li SY, Zheng YH (2018) Retigabine protects the blood-brain barrier by regulating tight junctions between cerebral vascular endothelial cells in cerebral ischemia-reperfusion rats. Eur Rev Med Pharmacol Sci 22(23):8509–8518

    PubMed  Google Scholar 

  24. Yang H, Xu Z, Liu W, Wei Y, Deng Y, Xu B (2012) Efect of grape seed pranthocyanidin extracts on methylmercury-induced neurotoxicity in rats. Biol Trace Elem Res 147(1–3):156–164

    Article  CAS  PubMed  Google Scholar 

  25. Liu B, Xu C, Wu X, Liu F, Du Y, Sun J, Tao J, Dong J (2015) Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 294:193–205

    Article  CAS  PubMed  Google Scholar 

  26. Liu XM, Feng Y, Li AM (2015) Efect of G-CSF and TPO on HIBD in neonatal rats. Asian Pac J Trop Med 8:132–136

    Article  CAS  PubMed  Google Scholar 

  27. Jin F, Gong QH, Xu YS, Wang LN, Jin H, Li F, Li LS, Ma YM, Shi JS (2014) Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol 17(6):871–881

    Article  CAS  PubMed  Google Scholar 

  28. Chen WF, Wu L, Du ZR, Chen L, Xu AL, Chen XH, Teng JJ, Wong MS (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99

    Article  CAS  PubMed  Google Scholar 

  29. Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y (2010) Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology 59(1–2):70–76

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Zhang L, Chen ZB, Wu JY, Zhang X, Xu Y (2009) Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1. Eur J Pharmacol 609(1–3):40–44

    Article  CAS  PubMed  Google Scholar 

  31. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CL, Britto LR, Feng ZP, Sun HS (2015) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kilicdag H, Daglioglu YK, Erdogan S, Zorludemir S (2014) Effects of caffeine on neuronal apoptosis in neonatal hypoxic-ischemic brain injury. J Matern Fetal Neonatal Med 27(14):1470–1475

    Article  CAS  PubMed  Google Scholar 

  33. Sidhu RS, Tuor UI, Del Bigio MR (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett 223(2):129–132

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China for Youth (grant no. 81901524), the Natural Science Foundation of Guangdong Province(2018A030313579), the Science Foundation of Guangdong Provincial Bureau of Traditional Chinese Medicine(20191015), the Medical Scientific Research Foundation of Guangdong Province, China (grant no. A2020252), and the Science Foundation of Guangdong No. 2 Provincial People’s Hospital for Youth (grant no. YQ2017-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Rong, Y. & Luo, L. Neuroprotective effects of icariin in neonatal hypoxia-ischemic brain damage via its anti-apoptotic property. Childs Nerv Syst 37, 39–46 (2021). https://doi.org/10.1007/s00381-020-04690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04690-8

Keywords

Navigation