Skip to main content

Advertisement

Log in

Design and validation of a 3D-printed simulator for endoscopic third ventriculostomy

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Simulation-based training has been considered as the most promising curriculum for neurosurgical education to finally improve surgical skills with the greatest efficiency and safety. However, most of the simulators including physical models and virtual reality systems are relatively expensive, which limits their promotion. In this study, the authors tried to develop a realistic, low-cost, and reusable simulator for endoscopic third ventriculostomy (ETV) and evaluate its validity.

Methods

A 3D-printed rigid skull with the ventricular system originated from a de-identified patient with obstructive hydrocephalus was constructed. The third ventricular floor was designed as a replaceable module. Thirty-nine neurosurgeons tested the simulator and a rating system was established to assess their performance. All participants filled out questionnaires to evaluate the simulator after training. Five neurosurgical students were recruited to finish the whole training for ten times in order to explore the learning curve of ETV.

Results

We found that (1) the more experienced surgeons performed obviously better than the rather inexperienced surgeons which verified that our model could reflect the ability of the trainees; (2) as the training progressed, the scores of the post-graduates increased and the fifth training average score was obviously higher than their first training average score. The feedback questionnaires showed the average scores for value of the simulator as a training tool and global rating were 3.15 and 3.54 (on a 4-point scale).

Conclusion

Our model was practical for ETV training. The results of our program showed that our model could precisely reflect the operators’ ability to perform ETV and could make it more efficient to master basic skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR (2013) Mixed-reality simulation for neurosurgical procedures. Neurosurgery 73(Suppl 1):138–145

    Article  Google Scholar 

  2. Bouras T, Sgouros S (2011) Complications of endoscopic third ventriculostomy. J Neurosurg Pediatr 7(6):643–649

    Article  Google Scholar 

  3. Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR (2017) Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr 20(1):1–9

    Article  Google Scholar 

  4. Breimer GE, Bodani V, Looi T, Drake JM (2015) Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy. J Neurosurg Pediatr 15(1):82–88

    Article  Google Scholar 

  5. Filho FV, Coelho G, Cavalheiro S, Lyra M, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30(4):E17

    Article  Google Scholar 

  6. Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ (2014) Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10(Suppl 4):576–581 discussion 581

    PubMed  Google Scholar 

  7. Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC (2013) Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst 29(8):1235–1244

    Article  Google Scholar 

  8. Harrop J, Lobel DA, Bendok B, Sharan A, Rezai AR (2013) Developing a neurosurgical simulation-based educational curriculum: an overview. Neurosurgery 73(Suppl 1):25–29

    Article  Google Scholar 

  9. Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR (2016) The role of simulation in neurosurgery. Childs Nerv Syst 32(1):43–54

    Article  Google Scholar 

  10. Bryson EO, Levine AI (2008) The simulation theater: a theoretical discussion of concepts and constructs that enhance learning. J Crit Care 23(2):185–187

    Article  Google Scholar 

  11. Wen G, Cong Z, Liu K, Tang C, Zhong C, Li L, Dai X, Ma C (2016) A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Childs Nerv Syst 32(6):1109–1116

    Article  Google Scholar 

  12. Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, Savastano LE (2015) Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg 123(4):1070–1076

    Article  Google Scholar 

Download references

Acknowledgments

We thank the teaching and research section of anatomy, Nanjing University, for technical support and equipment assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyuan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Yang, J., Tang, C. et al. Design and validation of a 3D-printed simulator for endoscopic third ventriculostomy. Childs Nerv Syst 36, 743–748 (2020). https://doi.org/10.1007/s00381-019-04421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-019-04421-8

Keywords

Navigation