Skip to main content

Advertisement

Log in

Unique findings of subependymal giant cell astrocytoma within cortical tubers in patients with tuberous sclerosis complex: a histopathological evaluation

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Tuberous sclerosis is associated with three central nervous system pathologies: cortical/subcortical tubers, subependymal nodules (SENs), and subependymal giant cell astrocytomas (SEGAs). Tubers are associated with epilepsy, which is often medication-resistant and often leads to resective surgery. Recently, mammalian target of rapamycin inhibitors (mTORi) have been shown to be effective reducing seizure burden in some patients with tuberous sclerosis complex (TSC)-related refractory epilepsy. mTORi have also been shown to be an alternative for surgery treating SEGAs. We describe several cases of resected tubers that contained SEGA tissue without an intraventricular SEGA.

Methods

After institutional review board (IRB) protocol approval, we retrospectively reviewed the surgical-pathological data for all TSC patients who underwent cortical resections for treatment of refractory epilepsy at NYU Langone Medical Center and Tel Aviv Medical Center between 2003 and 2013. Data included demographics, epilepsy type, MRI characteristics, epilepsy outcome, and histopathological staining.

Results

We reviewed cortical resections from 75 patients with complete pathological studies. In three patients, cortical lesions demonstrated histopathological findings consistent with a SEGA within the resected tuber tissue, with no intraventricular SEGA. All lesions were cortically based and none had any intraventricular extension. No patient had been treated before surgery with an mTORi. Two of the three patients remain Engel grade I–II. All lesions stained positive for glial fibrillary acidic protein (GFAP), synaptophysin, and neuronal nuclear antigen (NeuN).

Conclusion

This is the first description of cortical tubers harboring SEGA tissue. This observation though preliminary may suggest a subgroup of patients with intractable epilepsy in whom mTORi may be considered before surgical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TSC:

Tuberous sclerosis complex

SEN:

Subependymal nodules

SEGA:

Subependymal giant cell astrocytomas

mTORi:

Mammalian target of rapamycin inhibitors

GFAP:

Glial fibrillary acidic protein

AED:

Antiepileptic drugs

FLAIR:

Fluid-attenuated inversion recovery

References

  1. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  CAS  PubMed  Google Scholar 

  2. Bollo RJ, Berliner JL, Fischer I, Miles DK, Thiele EA, Zagzag D, Weiner HL (2009) Extraventricular subependymal giant cell tumor in a child with tuberous sclerosis complex. J Neurosurg Pediatr 4:85–90

    Article  PubMed  Google Scholar 

  3. Major P, Rakowski S, Simon MV, Cheng ML, Eskandar E, Baron J, Leeman BA, Frosch MP, Thiele EA (2009) Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia 50:147–154

    Article  PubMed  Google Scholar 

  4. Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, Spliet WG, Crino P, Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590

    PubMed  Google Scholar 

  5. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19:232–243

    PubMed  Google Scholar 

  6. Kumar R, Singh V (2004) Subependymal giant cell astrocytoma: a report of five cases. Neurosurg Rev 27:274–280

    PubMed  Google Scholar 

  7. Chalifoux JR, Perry N, Katz JS, Wiggins GC, Roth J, Miles D, Devinsky O, Weiner HL, Milla SS (2013) The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. J Neurosurg Pediatr 11:268–273

    Article  PubMed  Google Scholar 

  8. Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J (2012) Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr 9:406–413

    Article  PubMed  Google Scholar 

  9. Birca A, Mercier C, Major P (2010) Rapamycin as an alternative to surgical treatment of subependymal giant cell astrocytomas in a patient with tuberous sclerosis complex. J Neurosurg Pediatr 6:381–384

    Article  PubMed  Google Scholar 

  10. Harter DH, Bassani L, Rodgers SD, Roth J, Devinsky O, Carlson C, Wisoff JH, Weiner HL (2014) A management strategy for intraventricular subependymal giant cell astrocytomas in tuberous sclerosis complex. J Neurosurg Pediatr 13:21–28

    Article  PubMed  Google Scholar 

  11. Pinto Gama HP, da Rocha AJ, Braga FT, da Silva CJ, Maia AC Jr, de Campos Meirelles RG, Mendonca do Rego JI, Lederman HM (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125

    Article  PubMed  Google Scholar 

  12. Datta AN, Hahn CD, Sahin M (2008) Clinical presentation and diagnosis of tuberous sclerosis complex in infancy. J Child Neurol 23:268–273

    Article  PubMed  Google Scholar 

  13. Griffiths PD, Hoggard N (2009) Distribution and conspicuity of intracranial abnormalities on MR imaging in adults with tuberous sclerosis complex: a comparison of sequences including ultrafast T2-weighted images. Epilepsia 50:2605–2610

    Article  PubMed  Google Scholar 

  14. Braffman BH, Bilaniuk LT, Naidich TP, Altman NR, Post MJ, Quencer RM, Zimmerman RA, Brody BA (1992) MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology 183:227–238

    Article  CAS  PubMed  Google Scholar 

  15. Inoue Y, Nemoto Y, Murata R, Tashiro T, Shakudo M, Kohno K, Matsuoka O, Mochizuki K (1998) CT and MR imaging of cerebral tuberous sclerosis. Brain and Development 20:209–221

    Article  CAS  PubMed  Google Scholar 

  16. Weiner HL, Carlson C, Ridgway EB, Zaroff CM, Miles D, LaJoie J, Devinsky O (2006) Epilepsy surgery in young children with tuberous sclerosis: results of a novel approach. Pediatrics 117:1494–1502

    Article  PubMed  Google Scholar 

  17. Sosunov AA, Wu X, Weiner HL, Mikell CB, Goodman RR, Crino PD, McKhann GM 2nd (2008) Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49(Suppl 2):53–62

    Article  PubMed  Google Scholar 

  18. Romanelli P, Verdecchia M, Rodas R, Seri S, Curatolo P (2004) Epilepsy surgery for tuberous sclerosis. Pediatr Neurol 31:239–247

    Article  PubMed  Google Scholar 

  19. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Berkowitz N, Voi M, Peyrard S, Pelov D, Franz DN (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet

  20. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Berkowitz N, Anak O, Niolat J, Jozwiak S (2014) Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. The Lancet Oncology 15:1513–1520

    Article  CAS  PubMed  Google Scholar 

  21. Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN (2013) Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80:574–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodgers SD, Bassani L, Weiner HL, Harter DH (2012) Stereotactic endoscopic resection and surgical management of a subependymal giant cell astrocytoma: case report. J Neurosurg Pediatr 9:417–420

    Article  PubMed  Google Scholar 

  23. Cardamone M, Flanagan D, Mowat D, Kennedy SE, Chopra M, Lawson JA (2014) Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J Pediatr 164:1195–1200

    Article  CAS  PubMed  Google Scholar 

  24. Krueger DA, Wilfong AA, Holland-Bouley K, Anderson AE, Agricola K, Tudor C, Mays M, Lopez CM, Kim MO, Franz DN (2013) Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 74:679–687

    Article  CAS  PubMed  Google Scholar 

  25. Wiegand G, May TW, Ostertag P, Boor R, Stephani U, Franz DN (2013) Everolimus in tuberous sclerosis patients with intractable epilepsy: a treatment option? European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society 17:631–638

    Article  Google Scholar 

  26. Kotulska K, Chmielewski D, Borkowska J, Jurkiewicz E, Kuczynski D, Kmiec T, Lojszczyk B, Dunin-Wasowicz D, Jozwiak S (2013) Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society 17:479–485

    Article  Google Scholar 

  27. Ruppe V, Dilsiz P, Reiss CS, Carlson C, Devinsky O, Zagzag D, Weiner HL, Talos DM (2014) Developmental brain abnormalities in tuberous sclerosis complex: a comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia 55:539–550

    Article  CAS  PubMed  Google Scholar 

  28. Curatolo P (2015) Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 52:281–289

    Article  PubMed  Google Scholar 

  29. Tiberio D, Franz DN, Phillips JR (2011) Regression of a cardiac rhabdomyoma in a patient receiving everolimus. Pediatrics 127:e1335–e1337

    Article  PubMed  Google Scholar 

  30. Kingswood JC, Jozwiak S, Belousova ED, Frost MD, Kuperman RA, Bebin EM, Korf BR, Flamini JR, Kohrman MH, Sparagana SP, Wu JY, Brechenmacher T, Stein K, Berkowitz N, Bissler JJ, Franz DN (2014) The effect of everolimus on renal angiomyolipoma in patients with tuberous sclerosis complex being treated for subependymal giant cell astrocytoma: subgroup results from the randomized, placebo-controlled, phase 3 trial EXIST-1. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 29:1203–1210

    Article  CAS  Google Scholar 

  31. Moavero R, Coniglio A, Garaci F, Curatolo P (2013) Is mTOR inhibition a systemic treatment for tuberous sclerosis? Ital J Pediatr 39:57

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen XZ, Dai JP (2007) Tuberous sclerosis complex complicated with extraventricular cystic giant cell astrocytoma: case report. Chin Med J 120:854–856

    PubMed  Google Scholar 

  33. Painter MJ, Pang D, Ahdab-Barmada M, Bergman I (1984) Connatal brain tumors in patients with tuberous sclerosis. Neurosurgery 14:570–573

    Article  CAS  PubMed  Google Scholar 

  34. Oikawa S, Sakamoto K, Kobayashi N (1994) A neonatal huge subependymal giant cell astrocytoma: case report. Neurosurgery 35:748–750

    Article  CAS  PubMed  Google Scholar 

  35. Medhkour A, Traul D, Husain M (2002) Neonatal subependymal giant cell astrocytoma. Pediatr Neurosurg 36:271–274

    Article  PubMed  Google Scholar 

  36. Gallagher A, Madan N, Stemmer-Rachamimov A, Thiele EA (2010) Progressive calcified tuber in a young male with tuberous sclerosis complex. Dev Med Child Neurol 52:1062–1065

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chu-Shore CJ, Frosch MP, Grant PE, Thiele EA (2009) Progressive multifocal cystlike cortical tubers in tuberous sclerosis complex: clinical and neuropathologic findings. Epilepsia 50:2648–2651

    Article  PubMed  Google Scholar 

  38. Marti-Bonmati L, Menor F, Dosda R (2000) Tuberous sclerosis: differences between cerebral and cerebellar cortical tubers in a pediatric population. AJNR Am J Neuroradiol 21:557–560

    CAS  PubMed  Google Scholar 

  39. Takanashi J, Sugita K, Fujii K, Niimi H (1995) MR evaluation of tuberous sclerosis: increased sensitivity with fluid-attenuated inversion recovery and relation to severity of seizures and mental retardation. AJNR Am J Neuroradiol 16:1923–1928

    CAS  PubMed  Google Scholar 

  40. Iwasaki S, Nakagawa H, Kichikawa K, Fukusumi A, Watabe Y, Kitamura K, Otsuji H, Ohishi H, Uchida H (1990) MR and CT of tuberous sclerosis: linear abnormalities in the cerebral white matter. AJNR Am J Neuroradiol 11:1029–1034

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Roth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

No funding was obtained.

Financial disclosure

No financial disclosures.

Previously presented

Portions of this work were presented in abstract presentation form at the 43rd Annual Meeting of the AANS/CNS Section on Pediatric Neurological Surgery; Amelia Island, FL, Dec 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, J.S., Frankel, H., Ma, T. et al. Unique findings of subependymal giant cell astrocytoma within cortical tubers in patients with tuberous sclerosis complex: a histopathological evaluation. Childs Nerv Syst 33, 601–607 (2017). https://doi.org/10.1007/s00381-017-3335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3335-z

Keywords

Navigation