Skip to main content

Advertisement

Log in

Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: inflammatory cytokines

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Hydrocephalus (HC) has a multifactorial and complex picture of pathophysiology due to aetiology, age at and duration since onset. We have previously identified distinctions in markers of cell death associated with different aetiologies. Here, we examined cerebrospinal fluid (CSF) from human HC neonates for cytokines to identify further distinguishing features of different aetiologies.

Methods

CSF was collected during routine lumbar puncture or ventricular tap from neonates with hydrocephalus, or with no neurological condition (normal controls). Total protein, Fas receptor, Fas ligand, stem cell factor (SCF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were measured and compared between 8 unaffected and 28 HC neonatal CSF samples.

Results

Total protein was significantly (P < 0.05) raised in late-onset hydrocephalus (LOH). Fas receptor was raised (P < 0.05) in post-haemorrhagic hydrocephalus (PHH) and spina bifida with hydrocephalus (SB/HC), but no difference in Fas ligand was found. SCF was raised (P < 0.05) in SB/HC. HGF was found in all HC and was increased (P < 0.01) in PHH. Increased VEGF was found in PHH (P < 0.01) and SB/HC (P < 0.05). Variable levels of IL-6, TNF-α and IGF-1 were found in all HC groups compared with none in normal.

Conclusions

LOH was unusual with significantly raised total protein indicating an inflammatory state. Increased Fas receptor, VEGF, IGF-1 and HGF suggest anti-apoptotic and repair mechanism activation. By contrast, elevated TNF-α and IL-6 indicate inflammatory processes in these neonatal brains. Taken with our previous study, these data indicate that different pathophysiology, inflammation and repair are occurring in HC of different aetiologies and that additional treatment strategies may benefit these infants in addition to fluid diversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allan SM, Parker LC, Collins B, Davies R, Luheshi GN, Rothwell NJ (2000) Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proc Natl Acad Sci U S A 97:5580–5585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Andre R, Pinteaux E, Kimber I, Rothwell NJ (2005) Differential actions of IL-1 alpha and IL-1 beta in glial cells share common IL-1 signalling pathways. Neuroreport 16:153–157

    Article  CAS  PubMed  Google Scholar 

  3. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) IGF1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14:717–730

    Article  CAS  PubMed  Google Scholar 

  4. Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259–275

    Article  CAS  PubMed  Google Scholar 

  5. Berse B, Brown LF, Vandewater L, Dvorak HF, Senger DR (1992) Vascular-permeability factor (vascular endothelial growth-factor) gene is expressed differentially in normal-tissues, macrophages, and tumors. Mol Biol Cell 3:211–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 54:766–775

    Article  CAS  PubMed  Google Scholar 

  7. Buddensiek J, Dressel A, Kowalski M, Storch A, Sabolek M (2009) Adult cerebrospinal fluid inhibits neurogenesis but facilitates gliogenesis from fetal rat neural stem cells. J Neurosci Res 87:3054–3066

    Article  CAS  PubMed  Google Scholar 

  8. Buddensiek J, Dressel A, Kowalski M, Runge U, Schroeder H, Hermann A, Kirsch M, Storch A, Sabolek M (2010) Cerebrospinal fluid promotes survival and astroglial differentiation of adult human neural progenitor cells but inhibits proliferation and neuronal differentiation. BMC Neurosci 11:48

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bunn RC, King WD, Winkler MK, Fowlkes JL (2005) Early developmental changes in IGF-I, IGF-II, IGF binding protein-1, and IGF binding protein-3 concentration in the cerebrospinal fluid of children. Pediatr Res 58:89–93

    Article  CAS  PubMed  Google Scholar 

  10. Cheng HJ, Flanagan JG (1994) Transmembrane kit ligand cleavage does not require a signal in the cytoplasmic domain and occurs at a site dependent on spacing from the membrane. Mol Biol Cell 5:943–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762

    Article  CAS  PubMed  Google Scholar 

  12. Czosnyka M, Czosnyka Z, Schmidt EA, Momjian S (2003) Cerebrospinal fluid production. J Neurosurg 99:206–207

    PubMed  Google Scholar 

  13. Dang I, Nelson JK, DeVries GH (2005) c-Kit receptor expression in normal human Schwann cells and Schwann cell lines derived from neurofibromatosis type 1 tumors. J Neurosci Res 82:465–471

    Article  CAS  PubMed  Google Scholar 

  14. Di Renzo MF, Bertolotto A, Olivero M, Putzolu P, Crepaldi T, Schiffer D, Pagni CA, Comoglio PM (1993) Selective expression of the Met/HGF receptor in human central nervous system microglia. Oncogene 8:219–222

    PubMed  Google Scholar 

  15. Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16:457–499

    Article  CAS  PubMed  Google Scholar 

  16. Dougherty JM, Roth RM (1986) Cerebral spinal fluid. Emerg Med Clin North Am 4:281–297

    CAS  PubMed  Google Scholar 

  17. Dziegielewska KM, Knott GW, Saunders NR (2000) The nature and composition of the internal environment of the developing brain. Cell Mol Neurobiol 20:41–56

    Article  CAS  PubMed  Google Scholar 

  18. Erlandsson A, Larsson J, Forsberg-Nilsson K (2004) Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res 301:201–210

    Article  CAS  PubMed  Google Scholar 

  19. Eskandari R, Harris CA, McAllister JP 2nd (2011) Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst 27:2067–2076

    Article  PubMed  Google Scholar 

  20. Fassbender K, Eschenfelder C, Hennerici M (1999) Fas (APO-1/CD95) in inflammatory CNS diseases: intrathecal release in bacterial meningitis. J Neuroimmunol 93:122–125

    Article  CAS  PubMed  Google Scholar 

  21. Felderhoff-Mueser U, Herold R, Hochhaus F, Koehne P, Ring-Mrozik E, Obladen M, Buhrer C (2001) Increased cerebrospinal fluid concentrations of soluble Fas (CD95/Apo-1) in hydrocephalus. Arch Dis Child 84:369–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35

    CAS  PubMed  Google Scholar 

  23. Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system. Saunders, Philadelphia

    Google Scholar 

  24. Fukumizu M, Takashima S, Becker LE (1995) Neonatal posthemorrhagic hydrocephalus: neuropathologic and immunohistochemical studies. Pediatr Neurol 13:230–234

    Article  CAS  PubMed  Google Scholar 

  25. Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A: Discov Mol Cell Evol Biol 284A:475–484

    Article  Google Scholar 

  26. Gato A, Desmond ME (2009) Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol 327:263–272

    Article  CAS  PubMed  Google Scholar 

  27. Gerber J, Tumani H, Kolenda H, Nau R (1998) Lumbar and ventricular CSF protein, leukocytes, and lactate in suspected bacterial CNS infections. Neurology 51:1710–1714

    Article  CAS  PubMed  Google Scholar 

  28. Gibson RM, Rothwell NJ, Le Feuvre RA (2004) CNS injury: the role of the cytokine IL-1. Vet J 168:230–237

    Article  CAS  PubMed  Google Scholar 

  29. Gopinath G, Bhatia R, Gopinath PG (1979) Ultrastructural observations in experimental hydrocephalus in the rabbit. J Neurol Sci 43:333–334

    Article  CAS  PubMed  Google Scholar 

  30. Gruol DL, Nelson TE (1997) Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 15:307–339

    Article  CAS  PubMed  Google Scholar 

  31. Habgood MD, Knott GW, Dziegielewska KM, Saunders NR (1993) The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J Physiol 468:73–83

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Harris NG, Jones HC, Patel S (1994) Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter. Childs Nerv Syst 10:293–301, discussion 301

    Article  CAS  PubMed  Google Scholar 

  33. Hughes DP, Crispe IN (1995) A naturally occurring soluble isoform of murine Fas generated by alternative splicing. J Exp Med 182:1395–1401

    Article  CAS  PubMed  Google Scholar 

  34. Hunter G, Smith HV (1960) Calcium and magnesium in human cerebrospinal fluid. Nature 186:161–162

    Article  CAS  PubMed  Google Scholar 

  35. Jin K, Mao XO, Sun Y, Xie L, Greenberg DA (2002) Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest 110:311–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A 97:10242–10247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. John CC, Panoskaltsis-Mortari A, Opoka RO, Park GS, Orchard PJ, Jurek AM, Idro R, Byarugaba J, Boivin MJ (2008) Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg 78:198–205

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kahle PJ, Jakowec M, Teipel SJ, Hampel H, Petzinger GM, Di Monte DA, Silverberg GD, Moller HJ, Yesavage JA, Tinklenberg JR, Shooter EM, Murphy GM Jr (2000) Combined assessment of tau and neuronal thread protein in Alzheimer's disease CSF. Neurology 54:1498–1504

    Article  CAS  PubMed  Google Scholar 

  39. Kern MA, Bamborschke S, Nekic M, Schubert D, Rydin C, Lindholm D, Schirmacher P (2001) Concentrations of hepatocyte growth factor in cerebrospinal fluid under normal and different pathological conditions. Cytokine 14:170–176

    Article  CAS  PubMed  Google Scholar 

  40. Khurana RK (1996) Intracranial hypotension. Semin Neurol 16:5–10

    Article  CAS  PubMed  Google Scholar 

  41. Kirchhoff C, Stegmaier J, Bogner V, Buhmann S, Mussack T, Kreimeier U, Mutschler W, Biberthaler P (2006) Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury. J Neurotrauma 23:943–949

    Article  PubMed  Google Scholar 

  42. Krasnoselsky A, Massay MJ, DeFrances MC, Michalopoulos G, Zarnegar R, Ratner N (1994) Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. J Neurosci 14:7284–7290

    CAS  PubMed  Google Scholar 

  43. Krebs V, Suely O, Okay Y, Vaz F (2004) Tumor necrosis factor-a, interleukin-1b and interleukin-6 in the cerebrospinal fluid of newborn with meningitis. Arq Neuropsiquiatr 63(1):7–13

    Article  Google Scholar 

  44. Lai Y, Stange C, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Brown DS, Kochanek PM, Clark RSB (2006) Mitochondrial heat shock protein 60 is increased in cerebrospinal fluid following pediatric traumatic brain injury. Dev Neurosci 28:336–341

    Article  CAS  PubMed  Google Scholar 

  45. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D'Ercole AJ, Wong ET, LaMantia AS, Walsh CA (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Leinonen V, Menon LG, Carroll RS, Dello Iacono D, Grevet J, Jaaskelainen JE, Black PM (2011) Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Int J Alzheimer's Dis 2011:312526

    Google Scholar 

  47. Madsen JR, Shim JW, Abazi G, Fleming L, Fernholz B, Connors S, Folkman J (2009) VEGF-A is elevated in CSF of pediatric patients undergoing surgery for hydrocephalus. 52nd Annual Meeting of the Society for Research into Hydrocephalus and Spina Bifida

  48. Maina F, Klein R (1999) Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2:213–217

    Article  CAS  PubMed  Google Scholar 

  49. Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D, Cabanas F, Valcarce M, Quero J (1997) Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100:789–794

    Article  CAS  PubMed  Google Scholar 

  50. Martin C, Alonso MI, Santiago C, Moro JA, De la Mano A, Carretero R, Gato A (2009) Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int J Dev Neurosci 27:733–740

    Article  CAS  PubMed  Google Scholar 

  51. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 15:1218–1220

    CAS  PubMed  Google Scholar 

  52. McAllister II JP, Forsyth J, Deren KE (2009) Global neuroinflammation patterns in experimental neonatal hydrocephalus. 53rd Annual Meeting of the Society for Research into Hydrocephalus and Spina Bifida, Belfast

  53. McAllister JP 2nd (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 17:285–294

    Article  PubMed  Google Scholar 

  54. Milhorat TH (1972) Hydrocephalus and the cerebrospinal fluid. Williams and Wilkins Co, Baltimore

    Google Scholar 

  55. Milhorat TH, Davis DA, Hammock MK (1975) Localization of ouabin-sensitive Na-K ATPase in frog, rabbit and rat choroid plexus. Brain Res 99:170–174

    Article  CAS  PubMed  Google Scholar 

  56. Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  PubMed Central  PubMed  Google Scholar 

  57. Miyan JA, Zendah M, Mashayekhi F, Owen-Lynch PJ (2006) Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res 3:2

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett 211:13–16

    Article  CAS  PubMed  Google Scholar 

  59. Nabiuni M, Rasouli J, Parivar K, Kochesfehani HM, Irian S, Miyan JA (2012) In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells. Fluids Barriers CNS 9:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Nagashima H, Morio Y, Yamane K, Nanjo Y, Teshima R (2009) Tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 in the cerebrospinal fluid of patients with cervical myelopathy and lumbar radiculopathy. Eur Spine J 18:1946–1950

    Article  PubMed Central  PubMed  Google Scholar 

  61. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  CAS  PubMed  Google Scholar 

  62. Nagra G, Li J, McAllister JP 2nd, Miller J, Wagshul M, Johnston M (2008) Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J Physiol Regul Integr Comp Physiol 294:R1752–R1759

    Article  CAS  PubMed  Google Scholar 

  63. Nanba R, Kuroda S, Ishikawa T, Houkin K, Iwasaki Y (2004) Increased expression of hepatocyte growth factor in cerebrospinal fluid and intracranial artery in moyamoya disease. Stroke 35:2837–2842

    Article  CAS  PubMed  Google Scholar 

  64. Naureen I, Waheed KA, Rathore AW, Victor S, Mallucci C, Goodden JR, Chohan SN, Miyan JA (2013) Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss. Fluids Barriers CNS 10:34

    Article  PubMed Central  PubMed  Google Scholar 

  65. Nayeri F, Nilsson I, Hagberg L, Brudin L, Roberg M, Soderstrom C, Forsberg P (2000) Hepatocyte growth factor levels in cerebrospinal fluid: a comparison between acute bacterial and nonbacterial meningitis. J Infect Dis 181:2092–2094

    Article  CAS  PubMed  Google Scholar 

  66. Ozden M, Kalkan A, Demirdag K, Denk A, Kilic SS (2004) Hepatocyte growth factor (HGF) in patients with hepatitis B and meningitis. J Infect 49:229–235

    Article  CAS  PubMed  Google Scholar 

  67. Pallis C, MacIntyre I, Anstall H (1965) Some observations on magnesium in cerebrospinal fluid. J Clin Pathol 18:762–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Parada C, Martin C, Alonso MI, Moro JA, Bueno D, Gato A (2005) Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression. J Neurosci Res 82:333–345

    Article  CAS  PubMed  Google Scholar 

  69. Pattisapu JV (2001) Etiology and clinical course of hydrocephalus. Neurosurg Clin N Am 12:651–659

    CAS  PubMed  Google Scholar 

  70. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122:189–203

    Article  CAS  PubMed  Google Scholar 

  71. Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H (2006) Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol 48:751–755

    Article  PubMed  Google Scholar 

  72. Savman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751

    Article  CAS  PubMed  Google Scholar 

  73. Schoenle EJ, Haselbacher GK, Briner J, Janzer RC, Gammeltoft S, Humbel RE, Prader A (1986) Elevated concentration of IGF II in brain tissue from an infant with macrencephaly. J Pediatr 108:737–740

    Article  CAS  PubMed  Google Scholar 

  74. Schoniger S, Kopp MDA, Schomerus C, Maronde E, Dehghani F, Meiniel A, Rodriguez M, Korf HW, Nurnberger F (2002) Effects of neuroactive substances on the activity of subcommissural organ cells in dispersed cell and explant cultures. Cell Tissue Res 307:101–114

    Article  CAS  PubMed  Google Scholar 

  75. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    CAS  PubMed  Google Scholar 

  76. Streffer JR, Schuster M, Zipp F, Weller M (1998) Soluble CD95 (Fas/APO-1) in malignant glioma: (no) implications for CD95-based immunotherapy? J Neurooncol 40:233–235

    Article  CAS  PubMed  Google Scholar 

  77. Tarkowski E, Tullberg M, Fredman P, Wikkelso C (2003) Normal pressure hydrocephalus triggers intrathecal production of TNF-alpha. Neurobiol Aging 24:707–714

    Article  CAS  PubMed  Google Scholar 

  78. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46

    Article  CAS  PubMed  Google Scholar 

  79. Torres-Aleman I, Villalba M, Nieto-Bona MP (1998) Insulin-like growth factor-I modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. Neuroscience 83:321–334

    Article  CAS  PubMed  Google Scholar 

  80. Tsuzuki N, Miyazawa T, Matsumoto K, Nakamura T, Shima K, Chigasaki H (2000) Hepatocyte growth factor reduces infarct volume after transient focal cerebral ischemia in rats. Acta Neurochir Suppl 76:311–316

    CAS  PubMed  Google Scholar 

  81. Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828

    Article  CAS  PubMed  Google Scholar 

  82. Werther GA, Russo V, Baker N, Butler G (1998) The role of the insulin-like growth factor system in the developing brain. Horm Res 49:37–40

    Article  CAS  PubMed  Google Scholar 

  83. Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 3:99ra87

    Article  PubMed Central  PubMed  Google Scholar 

  84. Zappaterra MW, Lehtinen MK (2012) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253:1255–1266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Zhang SC, Fedoroff S (1997) Cellular localization of stem cell factor and c-kit receptor in the mouse nervous system. J Neurosci Res 47:1–15

    Article  CAS  PubMed  Google Scholar 

  87. Zhang W, Yi MJ, Chen X, Cole F, Krauss RS, Kang JS (2006) Cortical thinning and hydrocephalus in mice lacking the immunoglobulin superfamily member CDO. Mol Cell Biol 26:3764–3772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Zipp F, Otzelberger K, Dichgans J, Martin R, Weller M (1998) Serum CD95 of relapsing remitting multiple sclerosis patients protects from CD95-mediated apoptosis. J Neuroimmunol 86:151–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by The Charles Wolfson Charitable Trust (JAM). Miss Naureen was supported through a British Council INSPIRE grant (SP055) to The University of Manchester, UK and COMSATS Institute for Information Technology, Islamabad, Pakistan that also supported the work carried out in Islamabad and Lahore. We thank Dr. Nadeem Malik (neurosurgeon) and the Neonatology registrars at the Children’s Hospital Lahore for CSF collections in Pakistan; Sasha Burn, Dawn Williams, Clare Jennings, Anna Hendrickson and Jennifer Hill for CSF collections in the UK; Professor M. Akhtar, FRS and Dr Naeem of the School of Biological Sciences, University of Punjab, Lahore for access to laboratory facilities for sample preparation and lyophilisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaleel A. Miyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naureen, I., Waheed, K.A.I., Rathore, A.W. et al. Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: inflammatory cytokines. Childs Nerv Syst 30, 1155–1164 (2014). https://doi.org/10.1007/s00381-014-2415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-014-2415-6

Keywords

Navigation