Skip to main content

Advertisement

Log in

Cerebrovascular physiology in perinates with congenital hydrocephalus

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

This study investigated changes in regional cerebral blood flow (rCBF), autoregulation (AR), and mean CO2 reactivity (CO2r) in nine neonates, who underwent cerebrospinal fluid (CSF) diversion for congenital hydrocephalus.

Methods

During shunt insertion, a thermal diffusion probe inserted adjacent to the ventricular catheter in the right parietal region recorded rCBF. Changes in rCBF, mean arterial pressure, intracranial pressure (ICP), and expired CO2 tension were recorded before and after removing CSF.

Results

Mean baseline rCBF for the entire group was 19.5 mL/100 g/min (range 8.4–44.8), with a mean ICP of 9.9 mmHg (range 4–20). Following CSF removal, the rCBF increased significantly in two patients. Three patients demonstrated AR throughout their studies; one infant showed AR after CSF removal. One infant without AR during shunt insertion showed an increase in rCBF and AR during a revision 5 months later. Baseline CO2r varied considerably but was greater than two in two patients and increased in three other children after CSF removal. Mean follow-up was 23.6 months. One child, with severe developmental delay, died. Death or severe delay was associated with the absence of AR and a negative CO2r in three children. Normal or mild developmental delay was associated with AR and a neutral or positive CO2r in five patients.

Conclusions

Baseline levels of rCBF were not associated with developmental prognosis. AR and a positive CO2r were necessary but insufficient factors for normal development. The absence of AR and a negative CO2r were associated with poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sudikoff S, Banasiak K (1998) Techniques for measuring cerebral blood flow in children. Curr Opin Pediatr 10:291–298

    Article  CAS  PubMed  Google Scholar 

  2. Lancon JA, Haines DE, Bruce DA (2001) Cerebral blood flow and metabolism. In: McLone DG, Marlin AE, Scott RM, Steinbock P, Reigel DH, Walker ML (eds) Pediatric neurosurgery, 4th edn. Saunders, Philadelphia, pp 163–179

    Google Scholar 

  3. Madden JA (1993) The effect of carbon dioxide on cerebral arteries. Pharmac Ther 59:229–250

    Article  CAS  Google Scholar 

  4. Chang C-C, Asadah H, Mimura T, Suzuki S (2009) A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 111:610–617

    Article  CAS  PubMed  Google Scholar 

  5. Mamo HL, Meric PC, Ponsin JC, Rey AC, Loft AG, Seylaz JA (1987) Cerebral blood flow in normal pressure hydrocephalus. Stroke 18:1074–1080

    CAS  PubMed  Google Scholar 

  6. Bakker SLM, Boom AJW, Wijnhoud AD, Dippel DWJ, Delwel EJ, Koudstaal PJ (2002) Cerebral hemodynamics before and after shunting in normal pressure hydrocephalus. Acta Neurol Scand 106:123–127

    Article  CAS  PubMed  Google Scholar 

  7. Higashi K, Asahisa H, Uedan N, Kobayashi K, Hara K, Noda Y (1986) Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol Res 8:169–176

    CAS  PubMed  Google Scholar 

  8. Nakamura S, Hochwald GM (1983) Effects of arterial PCO2 and cerebrospinal fluid volume flow rate changes on choroid plexus and cerebral blood flow in normal and experimental hydrocephalic cats. J Cereb Blood Flow Metabol 3:369–375

    CAS  Google Scholar 

  9. Hanigan WC, Aldag J, Sabo RA, Rose J, Aaland MA (1996) Strangulation injuries in children. Part 2. Cerebrovascular hemodynamics. J Trauma Inj Infect Crit Care 40:73–77

    Article  CAS  Google Scholar 

  10. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC (1995) Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery 36:943–950

    Article  CAS  PubMed  Google Scholar 

  11. Gaines C, Carter LP, Crowell RM (1983) Comparison of local cerebral blood flow determined by thermal and hydrogen clearance. Stroke 14:66–69

    CAS  PubMed  Google Scholar 

  12. Weinand ME, Carter LP, El-Saadany WF, Sioutos PJ, Labiner DM, Oommen KJ (1997) Cerebral blood flow and temporal lobe epileptogenicity. J Neurosurg 86:226–232

    Article  CAS  PubMed  Google Scholar 

  13. Doberstein C, Martin NA (1996) Cerebral blood flow in clinical neurosurgery. In: Youmans JR (ed) Neurological surgery, 4th edn. Saunders, Philadelphia, pp 519–561

    Google Scholar 

  14. Hanigan W, Shaaban A, Bradle P, Morgan A (1991) Surgical treatment and long-term neurodevelopmental outcome for infants with idiopathic aqueductal stenosis. Childs Nerv Syst 7:386–390

    Article  CAS  PubMed  Google Scholar 

  15. Vavilala MS, Lee LA, Lee M, Graham A, Visco E, Lam AM (2003) Cerebral autoregulation in children during sevoflurane anesthesia. Br J Anesth 90:636–641

    Article  CAS  Google Scholar 

  16. Vavilala MS, Lee LA, Lam AM (2003) The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol 15:307–312

    Article  PubMed  Google Scholar 

  17. Børch K, Greisen G (1998) Blood flow distribution in a normal human preterm brain. Pediatr Res 43:28–33

    Article  PubMed  Google Scholar 

  18. Griesen G, Trojaborg W (1987) Cerebral blood flow, PaCO2 changes and visual evoked potentials in mechanically ventilated, preterm infants. Acta Pediatr Scand 76:394–400

    Article  Google Scholar 

  19. Lou HC, Skov H, Pedersen H (1979) Low cerebral blood flow: a risk factor in the neonate. J Pediatr 95:606–609

    Article  CAS  PubMed  Google Scholar 

  20. Altman DI, Powers WJ, Perlman JM, Herscovitch P, Volpe SL, Volpe JJ (1988) Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Annals Neurol 24:218–226

    Article  CAS  Google Scholar 

  21. Rosenbaum JL, Almli CR, Yundt MD, Altman DI, Powers WJ (1997) Higher neonatal cerebral blood flow correlates with worse childhood neurologic outcome. Neurology 49:1035–1041

    CAS  PubMed  Google Scholar 

  22. Pryds O (1991) Control of cerebral circulation in the high-risk neonates. Annals Neurol 30:321–329

    Article  CAS  Google Scholar 

  23. Boylan GB, Young K, Penerai RB, Rennie JN, Evans DH (2000) Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res 48:12–17

    Article  CAS  PubMed  Google Scholar 

  24. Fenton AC, Woods KL, Evans DH, Levene MI (1992) Cerebrovascular carbon dioxide reactivity and failure of autoregulation in preterm infants. Arch Dis Child 67:835–839

    Article  CAS  PubMed  Google Scholar 

  25. Pryds O, Greisen G, Lou H, Friis-Hansen B (1990) Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr 117:119–125

    Article  CAS  PubMed  Google Scholar 

  26. Greitz T (1969) Effective brain distention on cerebral circulation. Hypothesis. Lancet 1:863–865

    Article  CAS  PubMed  Google Scholar 

  27. Young WL, Prohovnik I, Ornstein E, Ostapkovich N, Sisti MB, Solomon RA, Stein BM (1990) The effect of arteriovenous malformation resection on cerebrovascular reactivity to carbon dioxide. Neurosurgery 27:257–267

    Article  CAS  PubMed  Google Scholar 

  28. Darby JM, Yonas H, Marion DW, Latchaw RE (1988) Local “inverse steal” induced by hyperventilation in head injury. Neurosurgery 23:84–88

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka A, Kimura M, Nakayama Y, Yoshinaga S, Tomonaga M (1997) Cerebral blood flow and autoregulation in normal pressure hydrocephalus. Neurosurg Online 40:1161–1167

    CAS  Google Scholar 

  30. Norman MG, O’Kusky JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45:222–232

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges the statistical assistance of Dr. Jean Aldag, Adjunct Professor of Preventative Medicine, University of Illinois, College of Medicine, Peoria, and the secretarial assistance of Laura Day.

Disclaimer

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Hanigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanigan, W.C., Bogner, D. Cerebrovascular physiology in perinates with congenital hydrocephalus. Childs Nerv Syst 26, 775–780 (2010). https://doi.org/10.1007/s00381-009-1075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1075-4

Keywords

Navigation