Skip to main content

Advertisement

Log in

Neuroprotective effect of combined hypoxia-induced VEGF and bone marrow-derived mesenchymal stem cell treatment

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purposes

To avoid unwanted adverse effects of higher doses of single treatment of stem cells and gene therapy and increase the therapeutic efficacies, we hypothesized the combined therapy with stem cells and gene therapy. This study assessed the neuroprotective effects of combined gene therapy and stem cell treatment under ischemic hypoxia conditions using hypoxia-inducible vascular endothelial growth factor (VEGF) and bone marrow-derived mesenchymal stem cells (BMSC).

Methods

Experimental groups included the control which was N2A cells transfected with empty vectors, the transfection only group which was N2A cells treated with pEpo-SV-VEGF alone, the BMSC only group which was N2A cells transfected with empty vectors and cocultured with BMSCs, and the combined treatment group which was N2A cells treated with pEpo-SV-VEGF and cocultured with BMSCs. Each group was transfected for 4 h and cultured at 37°C and 5% CO2 for 24 h. Each group was then cultivated under hypoxic conditions (1% O2) for 12 h. Neuroprotective effects were assessed by reverse transcription polymerase chain reaction, annexin V, and cytotoxicity assay.

Results

Neurons exposed to hypoxic conditions exhibited neuronal apoptosis. Compared to single treatments, the combined hypoxia-inducible VEGF and BMSC treatment demonstrated a significant increase in VEGF expression and decreased neuronal apoptosis.

Conclusions

These results suggest that combined pEpo-SV-VEGF and BMSC treatment is effective in protecting neurons against hypoxic ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belayev L, Khoutorova L, Zhao KL, Davidoff AW, Moore AF, Cramer SC (2009) A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res 1280:117–123

    Article  CAS  PubMed  Google Scholar 

  2. Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J (2006) Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis 21(Suppl 2):38–47

    Article  CAS  PubMed  Google Scholar 

  3. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, Carroll J, Hess DC (2004) Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 1010:108–116

    Article  CAS  PubMed  Google Scholar 

  4. Breier G (2000) Functions of the VEGF/VEGF receptor system in the vascular system. Semin Thromb Hemost 26:553–559

    Article  CAS  PubMed  Google Scholar 

  5. Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53

    Article  CAS  PubMed  Google Scholar 

  6. Chacon MR, Jensen MB, Sattin JA, Zivin JA (2008) Neuroprotection in cerebral ischemia: emphasis on the SAINT trial. Curr Cardiol Rep 10:37–42

    Article  PubMed  Google Scholar 

  7. Chang YC, Shyu WC, Lin SZ, Li H (2007) Regenerative therapy for stroke. Cell Transplant 16:171–181

    PubMed  Google Scholar 

  8. Choi BH, Ha Y, Ahn CH, Huang X, Kim JM, Park SR, Park H, Park HC, Kim SW, Lee M (2007) A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neurosci Lett 412:118–122

    Article  CAS  PubMed  Google Scholar 

  9. Choi UH, Ha Y, Huang X, Park SR, Chung J, Hyun DK, Park H, Park HC, Kim SW, Lee M (2007) Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine 7:54–60

    Article  PubMed  Google Scholar 

  10. Clarkson AN, Sutherland BA, Appleton I (2005) The biology and pathology of hypoxia–ischemia: an update. Arch Immunol Ther Exp (Warsz) 53:213–225

    CAS  Google Scholar 

  11. Davis DP, Patel PM (2003) Ischemic preconditioning in the brain. Curr Opin Anaesthesiol 16:447–452

    Article  PubMed  Google Scholar 

  12. Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF, Zhou GQ, Zhou YF (2009) Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res (in press). doi:10.1179/174313209X414434

  13. Dong W, Li N, Gao D, Zhen H, Zhang X, Li F (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48:709–714

    Article  PubMed  Google Scholar 

  14. Garcia R, Aguiar J, Alberti E, de la Cuetara K, Pavon N (2004) Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun 316:753–754

    Article  CAS  PubMed  Google Scholar 

  15. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  CAS  PubMed  Google Scholar 

  16. Hansen TM, Moss AJ, Brindle NP (2008) Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Curr Neurovasc Res 5:236–245

    Article  CAS  PubMed  Google Scholar 

  17. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86:1024–1035

    Article  CAS  PubMed  Google Scholar 

  18. Hokari M, Kuroda S, Chiba Y, Maruichi K, Iwasaki Y (2009) Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine 46:260–266

    Article  CAS  PubMed  Google Scholar 

  19. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2:e156

    Article  PubMed  Google Scholar 

  20. Lee M, Lee ES, Kim YS, Choi BH, Park SR, Park HS, Park HC, Kim SW, Ha Y (2005) Ischemic injury-specific gene expression in the rat spinal cord injury model using hypoxia-inducible system. Spine 30:2729–2734

    Article  PubMed  Google Scholar 

  21. Lee SH, Kim YJ, Lee KM, Ryu S, Yoon BW (2007) Ischemic preconditioning enhances neurogenesis in the subventricular zone. Neuroscience 146:1020–1031

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Wu H, Yang S, Chen D (2007) Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair. DNA Repair (Amst) 6:1297–1306

    Article  CAS  Google Scholar 

  23. Liu M, Alkayed NJ (2005) Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab 25:939–948

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto M, Ishida K, Sakabe T (2007) Brain and spinal cord preconditioning for the protection against ischemic injury. Masui 56:285–297

    PubMed  Google Scholar 

  25. Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, Vexler ZS, Ferriero DM (2003) Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 14:524–534

    Article  CAS  PubMed  Google Scholar 

  26. Mu D, Chang YS, Vexler ZS, Ferriero DM (2005) Hypoxia-inducible factor 1alpha and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol 195:407–415

    Article  CAS  PubMed  Google Scholar 

  27. Namiecinska M, Marciniak K, Nowak JZ (2005) VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw (Online) 59:573–583

    Google Scholar 

  28. Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353

    Article  CAS  PubMed  Google Scholar 

  29. Spence JD (2009) Stroke: atrial fibrillation, stroke prevention therapy and aging. Nat Rev Cardiol 6:448–450

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    CAS  PubMed  Google Scholar 

  31. Tang Y, Pacary E, Freret T, Divoux D, Petit E, Schumann-Bard P, Bernaudin M (2006) Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol Dis 21:18–28

    Article  CAS  PubMed  Google Scholar 

  32. Trapp T, Kogler G, El-Khattouti A, Sorg RV, Besselmann M, Focking M, Buhrle CP, Trompeter I, Fischer JC, Wernet P (2008) Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury. J Biol Chem 283:32244–32253

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Galvan V, Gorostiza O, Ataie M, Jin K, Greenberg DA (2006) Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Res 1115:186–193

    Article  CAS  PubMed  Google Scholar 

  34. Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY (2007) VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res 85:73–82

    Article  CAS  PubMed  Google Scholar 

  35. Wu J, Sun Z, Sun HS, Weisel RD, Keating A, Li ZH, Feng ZP, Li RK (2008) Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16:993–1005

    Article  PubMed  Google Scholar 

  36. Zhang P, Li J, Liu Y, Chen X, Kang Q (2009) Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 29:410–421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants (SC-4180) from Stem Cell Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, S.S., Jin, H.L., Kim, K.N. et al. Neuroprotective effect of combined hypoxia-induced VEGF and bone marrow-derived mesenchymal stem cell treatment. Childs Nerv Syst 26, 323–331 (2010). https://doi.org/10.1007/s00381-009-1040-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1040-2

Keywords

Navigation