Skip to main content

Advertisement

Log in

Practical aspects of bedside cerebral hemodynamics monitoring in pediatric TBI

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Disturbances in cerebral hemodynamics may have a profound influence on secondary injury after traumatic brain injury (TBI), and many therapies in the neurocritical care unit may adversely affect cerebral blood flow. However, the clinician is often unaware of this when it occurs because practical methods for monitoring cerebral hemodynamics by the bedside have been lacking. Current imaging studies only provide a snapshot of the brain at one point in time, giving limited information about a dynamic condition.

Discussion

This review will focus on key pathophysiological concepts required to understand changes in cerebral hemodynamics after TBI and the principles, potential benefits, and limitations of currently available bedside monitoring techniques, including transcranial Doppler, autoregulation, and local/regional cerebral blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    CAS  PubMed  Google Scholar 

  2. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    CAS  PubMed  Google Scholar 

  3. Adelson PD, Clyde B, Kochanek PM, Wisniewski SR, Marion DW, Yonas H (1997) Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 26(4):200–207

    CAS  PubMed  Google Scholar 

  4. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12(6):723–725

    CAS  PubMed  Google Scholar 

  5. Bandres J, Yao L, Nemoto EM, Yonas H, Darby J (1992) Effects of dobutamine and dopamine on whole brain blood flow and metabolism in unanesthetized monkeys. J Neurosurg Anesthesiol 4(4):250–256

    CAS  PubMed  Google Scholar 

  6. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51, discussion 51

    PubMed  Google Scholar 

  7. Bishop CC, Powell S, Rutt D, Browse NL (1986) Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17(5):913–915

    CAS  PubMed  Google Scholar 

  8. Bouma GJ, Muizelaar JP (1990) Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg 73(3):368–374

    CAS  PubMed  Google Scholar 

  9. Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A (1992) Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg 77(1):15–19

    CAS  PubMed  Google Scholar 

  10. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75(5):685–693

    CAS  PubMed  Google Scholar 

  11. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77(3):360–368

    CAS  PubMed  Google Scholar 

  12. Bruce DA, Raphaely RC, Goldberg AI, Zimmerman RA, Bilaniuk LT, Schut L, Kuhl DE (1979) Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain 5(3):174–191

    CAS  PubMed  Google Scholar 

  13. Chan KH, Dearden NM, Miller JD (1992) The significance of posttraumatic increase in cerebral blood flow velocity: a transcranial Doppler ultrasound study. Neurosurgery 30(5):697–700

    CAS  PubMed  Google Scholar 

  14. Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S (1992) The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg 77(1):55–61

    CAS  PubMed  Google Scholar 

  15. Chiron C, Raynaud C, Maziere B, Zilbovicius M, Laflamme L, Masure MC, Dulac O, Bourguignon M, Syrota A (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33(5):696–703

    CAS  PubMed  Google Scholar 

  16. Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24(2):202–211

    PubMed  Google Scholar 

  17. Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, Menon DK (2004) Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab 24(2):191–201

    PubMed  Google Scholar 

  18. Cremer OL, van Dijk GW, Amelink GJ, de Smet AM, Moons KG, Kalkman CJ (2004) Cerebral hemodynamic responses to blood pressure manipulation in severely head-injured patients in the presence or absence of intracranial hypertension. Anesth Analg 99(4):1211–1217

    PubMed  Google Scholar 

  19. Cunningham AS, Salvador R, Coles JP, Chatfield DA, Bradley PG, Johnston AJ, Steiner LA, Fryer TD, Aigbirhio FI, Smielewski P, Williams GB, Carpenter TA, Gillard JH, Pickard JD, Menon DK (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128(Pt 8):1931–1942

    CAS  PubMed  Google Scholar 

  20. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27(10):1829–1834

    CAS  PubMed  Google Scholar 

  21. Czosnyka M, Smielewski P, Lavinio A, Pickard JD, Panerai R (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106(1):234–239

    PubMed  Google Scholar 

  22. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD (2001) Cerebral autoregulation following head injury. J Neurosurg 95(5):756–763

    CAS  PubMed  Google Scholar 

  23. Diringer MN, Videen TO, Yundt K, Zazulia AR, Aiyagari V, Dacey RG Jr, Grubb RL, Powers WJ (2002) Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 96(1):103–108

    PubMed  Google Scholar 

  24. Edvinsson L, Lacombe P, Owman C, Reynier-Rebuffel AM, Seylaz J (1979) Quantitative changes in regional cerebral blood flow of rats induced by alpha- and beta-adrenergic stimulants. Acta Physiol Scand 107(4):289–296

    CAS  PubMed  Google Scholar 

  25. Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC (2009) Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 72:389–394

    PubMed  Google Scholar 

  26. Fog M (1938) The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry 1(3):187–197

    Google Scholar 

  27. Gosling RG, King DH (1974) Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67(6 Pt 1):447–449

    CAS  PubMed  Google Scholar 

  28. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, McLellan DR (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52(3):346–350

    CAS  PubMed  Google Scholar 

  29. Hemphill JC 3rd, Knudson MM, Derugin N, Morabito D, Manley GT (2001) Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery 48(2):377–383, discussion 383–4

    PubMed  Google Scholar 

  30. Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, Pickard JD (2006) Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 104(5):731–737

    PubMed  Google Scholar 

  31. Hlatky R, Valadka AB, Robertson CS (2006) Analysis of dynamic autoregulation assessed by the cuff deflation method. Neurocrit Care 4(2):127–132

    PubMed  Google Scholar 

  32. Hlatky R, Valadka AB, Robertson CS (2005) Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation. Neurosurgery 57(5):917–923, discussion 917–23

    PubMed  Google Scholar 

  33. Howells T, Elf K, Jones PA, Ronne-Engstrom E, Piper I, Nilsson P, Andrews P, Enblad P (2005) Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg 102(2):311–317

    PubMed  Google Scholar 

  34. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34(6):1783–1788

    PubMed  Google Scholar 

  35. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J (2005) Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien) 147(1):51–56, discussion 56

    CAS  Google Scholar 

  36. Kelly DF, Martin NA, Kordestani R, Counelis G, Hovda DA, Bergsneider M, McBride DQ, Shalmon E, Herman D, Becker DP (1997) Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 86(4):633–641

    CAS  PubMed  Google Scholar 

  37. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234(4):H371–H383

    CAS  PubMed  Google Scholar 

  38. Kroppenstedt SN, Kern M, Thomale UW, Schneider GH, Lanksch WR, Unterberg AW (1999) Effect of cerebral perfusion pressure on contusion volume following impact injury. J Neurosurg 90(3):520–526

    CAS  PubMed  Google Scholar 

  39. Lam JM, Hsiang JN, Poon WS (1997) Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86(3):438–445

    CAS  PubMed  Google Scholar 

  40. Lang EW, Chesnut RM (2000) A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg 14(2):117–126

    CAS  PubMed  Google Scholar 

  41. NA LASSEN (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2):183–238

    Google Scholar 

  42. Lee JH, Kelly DF, Oertel M, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Martin NA (2001) Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg 95(2):222–232

    CAS  PubMed  Google Scholar 

  43. Lee JH, Martin NA, Alsina G, McArthur DL, Zaucha K, Hovda DA, Becker DP (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 87(2):221–233

    CAS  PubMed  Google Scholar 

  44. Lewis S, Wong M, Myburgh J, Reilly P (1998) Determining cerebral perfusion pressure thresholds in severe head trauma. Acta Neurochir Suppl 71:174–176

    CAS  PubMed  Google Scholar 

  45. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1989) Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir (Wien) 100(1–2):12–24

    CAS  Google Scholar 

  46. MacKenzie ET, McCulloch J, O'Kean M, Pickard JD, Harper AM (1976) Cerebral circulation and norepinephrine: relevance of the blood–brain barrier. Am J Physiol 231(2):483–488

    CAS  PubMed  Google Scholar 

  47. Mandera M, Larysz D, Wojtacha M (2002) Changes in cerebral hemodynamics assessed by transcranial Doppler ultrasonography in children after head injury. Childs Nerv Syst 18(3–4):124–128

    PubMed  Google Scholar 

  48. Marshall RS (2004) The functional relevance of cerebral hemodynamics: why blood flow matters to the injured and recovering brain. Curr Opin Neurol 17(6):705–709

    PubMed  Google Scholar 

  49. Martin NA, Doberstein C, Zane C, Caron MJ, Thomas K, Becker DP (1992) Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg 77(4):575–583

    CAS  PubMed  Google Scholar 

  50. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87(1):9–19

    CAS  PubMed  Google Scholar 

  51. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32(6):1384–1390

    PubMed  Google Scholar 

  52. Meyer PG, Ducrocq S, Rackelbom T, Orliaguet G, Renier D, Carli P (2005) Surgical evacuation of acute subdural hematoma improves cerebral hemodynamics in children: a transcranial Doppler evaluation. Childs Nerv Syst 21(2):133–137

    PubMed  Google Scholar 

  53. Monteiro LM, Bollen CW, van Huffelen AC, Ackerstaff RG, Jansen NJ, van Vught AJ (2006) Transcranial Doppler ultrasonography to confirm brain death: a meta-analysis. Intensive Care Med 32(12):1937–1944

    PubMed  Google Scholar 

  54. Moreno JA, Mesalles E, Gener J, Tomasa A, Ley A, Roca J, Fernandez-Llamazares J (2000) Evaluating the outcome of severe head injury with transcranial Doppler ultrasonography. Neurosurg Focus 8(1):e8

    CAS  PubMed  Google Scholar 

  55. Muizelaar JP, Marmarou A, DeSalles AA, Ward JD, Zimmerman RS, Li Z, Choi SC, Young HF (1989) Cerebral blood flow and metabolism in severely head-injured children. Part 1: relationship with GCS score, outcome, ICP, and PVI. J Neurosurg 71(1):63–71

    CAS  PubMed  Google Scholar 

  56. Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A (1989) Cerebral blood flow and metabolism in severely head-injured children. Part 2: autoregulation. J Neurosurg 71(1):72–76

    CAS  PubMed  Google Scholar 

  57. Myburgh JA, Upton RN, Grant C, Martinez A (1998) A comparison of the effects of norepinephrine, epinephrine, and dopamine on cerebral blood flow and oxygen utilisation. Acta Neurochir Suppl 71:19–21

    CAS  PubMed  Google Scholar 

  58. Nadvi SS, Du Trevou MD, Van Dellen JR, Gouws E (1994) The use of transcranial Doppler ultrasonography as a method of assessing intracranial pressure in hydrocephalic children. Br J Neurosurg 8(5):573–577

    CAS  PubMed  Google Scholar 

  59. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR (1994) Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 25(4):793–797

    CAS  PubMed  Google Scholar 

  60. Newell DW, Aaslid R, Stooss R, Seiler RW, Reulen HJ (1997) Evaluation of hemodynamic responses in head injury patients with transcranial Doppler monitoring. Acta Neurochir (Wien) 139(9):804–817

    CAS  Google Scholar 

  61. Ng SC, Poon WS, Chan MT, Lam JM, Lam W, Metreweli C (2000) Transcranial Doppler ultrasonography (TCD) in ventilated head injured patients: correlation with stable xenon-enhanced CT. Acta Neurochir Suppl 76:479–482

    CAS  PubMed  Google Scholar 

  62. Ng SC, Poon WS, Chan MT, Lam JM, Lam WW (2002) Is transcranial Doppler ultrasonography (TCD) good enough in determining CO2 reactivity and pressure autoregulation in head-injured patients? Acta Neurochir Suppl 81:125–127

    CAS  PubMed  Google Scholar 

  63. Nordstrom CH (2006) Cerebral perfusion pressure between 50 and 60 mmHg may be beneficial in head-injured patients: a computerized secondary insult monitoring study. Neurosurgery 58(3):E590, author reply E590

    PubMed  Google Scholar 

  64. Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T, Lee JH, Martin NA (2005) Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 103(5):812–824

    PubMed  Google Scholar 

  65. Oertel M, Kelly DF, Lee JH, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Hovda DA, Martin NA (2002) Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg 97(5):1045–1053

    PubMed  Google Scholar 

  66. Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans—a review of measurement methods. Physiol Meas 19(3):305–338

    CAS  PubMed  Google Scholar 

  67. Panerai RB, Kerins V, Fan L, Yeoman PM, Hope T, Evans DH (2004) Association between dynamic cerebral autoregulation and mortality in severe head injury. Br J Neurosurg 18(5):471–479

    CAS  PubMed  Google Scholar 

  68. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2):161–192

    CAS  PubMed  Google Scholar 

  69. Pople IK, Quinn MW, Bayston R, Hayward RD (1991) The Doppler pulsatility index as a screening test for blocked ventriculo-peritoneal shunts. Eur J Pediatr Surg 1(Suppl 1):27–29

    PubMed  Google Scholar 

  70. Ract C, Le Moigno S, Bruder N, Vigue B (2007) Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med 33(4):645–651

    PubMed  Google Scholar 

  71. Ract C, Vigue B (2001) Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Intensive Care Med 27(1):101–106

    CAS  PubMed  Google Scholar 

  72. Ract C, Vigue B, Bodjarian N, Mazoit JX, Samii K, Tadie M (2001) Comparison of dopamine and norepinephrine after traumatic brain injury and hypoxic–hypotensive insult. J Neurotrauma 18(11):1247–1254

    CAS  PubMed  Google Scholar 

  73. Rosner MJ, Daughton S (1990) Cerebral perfusion pressure management in head injury. J Trauma 30(8):933–940, discussion 940–1

    CAS  PubMed  Google Scholar 

  74. Rosner MJ, Rosner SD, Johnson AH (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 83(6):949–962

    CAS  PubMed  Google Scholar 

  75. Sahuquillo J, Munar F, Baguena M, Poca MA, Pedraza S, Rodriguez-Baeza A (1998) Evaluation of cerebrovascular CO2-reactivity and autoregulation in patients with post-traumatic diffuse brain swelling (diffuse injury III). Acta Neurochir Suppl 71:233–236

    CAS  PubMed  Google Scholar 

  76. Sanker P, Richard KE, Weigl HC, Klug N, van Leyen K (1991) Transcranial Doppler sonography and intracranial pressure monitoring in children and juveniles with acute brain injuries or hydrocephalus. Childs Nerv Syst 7(7):391–393

    CAS  PubMed  Google Scholar 

  77. Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70(2):198–204

    CAS  PubMed  Google Scholar 

  78. Schmidt EA, Czosnyka M, Steiner LA, Balestreri M, Smielewski P, Piechnik SK, Matta BF, Pickard JD (2003) Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg 99(6):991–998

    PubMed  Google Scholar 

  79. Sharples PM, Matthews DS, Eyre JA (1995) Cerebral blood flow and metabolism in children with severe head injuries. Part 2: cerebrovascular resistance and its determinants. J Neurol Neurosurg Psychiatry 58(2):153–159

    CAS  PubMed  Google Scholar 

  80. Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA (1995) Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58(2):145–152

    CAS  PubMed  Google Scholar 

  81. Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 77(2):169–184

    CAS  PubMed  Google Scholar 

  82. Sokrab TE, Johansson BB (1989) Regional cerebral blood flow in acute hypertension induced by adrenaline, noradrenaline and phenylephrine in the conscious rat. Acta Physiol Scand 137(1):101–106

    CAS  PubMed  Google Scholar 

  83. Soustiel JF, Sviri GE (2007) Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury. Neurol Res 29(7):654–660

    CAS  PubMed  Google Scholar 

  84. Splavski B, Radanovic B, Vrankovic D, Has B, Muzevic D, Janculjak D, Legcevic J (2006) Transcranial Doppler ultrasonography as an early outcome forecaster following severe brain injury. Br J Neurosurg 20(6):386–390

    CAS  PubMed  Google Scholar 

  85. Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, Clark JC, Smielewski P, Chatfield DA, Donovan T, Pickard JD, Menon DK (2003) Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatry 74(6):765–770

    CAS  PubMed  Google Scholar 

  86. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M (2003) Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 34(10):2404–2409

    PubMed  Google Scholar 

  87. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30(4):733–738

    PubMed  Google Scholar 

  88. Steiner LA, Johnston AJ, Czosnyka M, Chatfield DA, Salvador R, Coles JP, Gupta AK, Pickard JD, Menon DK (2004) Direct comparison of cerebrovascular effects of norepinephrine and dopamine in head-injured patients. Crit Care Med 32(4):1049–1054

    PubMed  Google Scholar 

  89. Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW (1995) Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 83(1):66–76

    CAS  PubMed  Google Scholar 

  90. ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L (1998) Changes in cerebral blood flow during PaCO2 variations in patients with severe closed head injury: comparison between the Fick and transcranial Doppler methods. J Neurosurg 88(6):996–1001

    PubMed  Google Scholar 

  91. Thome C, Vajkoczy P, Horn P, Bauhuf C, Hubner U, Schmiedek P (2001) Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery. J Neurosurg 95(3):402–411

    CAS  PubMed  Google Scholar 

  92. Tonnesen J, Pryds A, Larsen EH, Paulson OB, Hauerberg J, Knudsen GM (2005) Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp Physiol 90(3):349–355

    PubMed  Google Scholar 

  93. Tontisirin N, Armstead W, Waitayawinyu P, Moore A, Udomphorn Y, Zimmerman JJ, Chesnut R, Vavilala MS (2007) Change in cerebral autoregulation as a function of time in children after severe traumatic brain injury: a case series. Childs Nerv Syst 23(10):1163–1169

    PubMed  Google Scholar 

  94. Trabold F, Meyer PG, Blanot S, Carli PA, Orliaguet GA (2004) The prognostic value of transcranial Doppler studies in children with moderate and severe head injury. Intensive Care Med 30(1):108–112

    PubMed  Google Scholar 

  95. Tuor UI, Edvinsson L, McCulloch J (1986) Catecholamines and the relationship between cerebral blood flow and glucose use. Am J Physiol 251(4 Pt 2):H824–H833

    CAS  PubMed  Google Scholar 

  96. Udomphorn Y, Armstead WM, Vavilala MS (2008) Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 38(4):225–234

    PubMed  Google Scholar 

  97. Ursino M, Di Giammarco P (1991) A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng 19(1):15–42

    CAS  PubMed  Google Scholar 

  98. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98(6):1227–1234

    PubMed  Google Scholar 

  99. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P (2000) Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 93(2):265–274

    CAS  PubMed  Google Scholar 

  100. van Santbrink H, Schouten JW, Steyerberg EW, Avezaat CJ, Maas AI (2002) Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien) 144(11):1141–1149

    Google Scholar 

  101. Vavilala MS, Kincaid MS, Muangman SL, Suz P, Rozet I, Lam AM (2005) Gender differences in cerebral blood flow velocity and autoregulation between the anterior and posterior circulations in healthy children. Pediatr Res 58(3):574–578

    PubMed  Google Scholar 

  102. Vavilala MS, Lee LA, Boddu K, Visco E, Newell DW, Zimmerman JJ, Lam AM (2004) Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 5(3):257–263

    PubMed  Google Scholar 

  103. Vavilala MS, Muangman S, Tontisirin N, Fisk D, Roscigno C, Mitchell P, Kirkness C, Zimmerman JJ, Chesnut R, Lam AM (2006) Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev Neurosci 28(4–5):348–353

    CAS  PubMed  Google Scholar 

  104. Vavilala MS, Tontisirin N, Udomphorn Y, Armstead W, Zimmerman JJ, Chesnut R, Lam AM (2007) Hemispheric differences in cerebral autoregulation in children with moderate and severe traumatic brain injury. Neurocrit Care 9:45–54

    Google Scholar 

  105. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25(6):763–774

    CAS  PubMed  Google Scholar 

  106. Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS (2005) Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit 11(2):CR49–CR52

    PubMed  Google Scholar 

  107. Zauner A, Daugherty WP, Bullock MR, Warner DS (2002) Brain oxygenation and energy metabolism: part I—biological function and pathophysiology. Neurosurgery 51(2):289–301, discussion 302

    PubMed  Google Scholar 

  108. Zubkov AY, Lewis AI, Raila FA, Zhang J, Parent AD (2000) Risk factors for the development of post-traumatic cerebral vasospasm. Surg Neurol 53(2):126–130

    CAS  PubMed  Google Scholar 

  109. Zwienenberg M, Muizelaar JP (1999) Severe pediatric head injury: the role of hyperemia revisited. J Neurotrauma 16(10):937–943

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the South Africa–Swedish Links Program/National Research Foundation (GUN 2072790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Figaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figaji, A.A. Practical aspects of bedside cerebral hemodynamics monitoring in pediatric TBI. Childs Nerv Syst 26, 431–439 (2010). https://doi.org/10.1007/s00381-009-1036-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1036-y

Keywords

Navigation