Skip to main content

Advertisement

Log in

Cerebral blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism?

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

In this paper, we re-propose the role of a hydraulic mechanism, acting where the bridging veins enter the dural sinuses in cerebral blood flow (CBF) autoregulation.

Materials and methods

We carried out an intraventricular infusion in ten albino rabbits and increased intracranial pressure (ICP) up to arterial blood pressure (ABP) levels. We measured CBF velocity by an ultrasound probe applied to a by-pass inserted in a carotid artery and recorded ICP by an intraventricular needle. Diastolic and pulsatile ICP and ABP values were analyzed from basal conditions up to brain tamponade and vice versa.

Conclusions

A biphasic pattern of pulsatile intracranial pressure (pICP) was observed in all trials. Initially, until the CBF velocity remained constant, pICP increased (from 1.2 to 5.4 mmHg) following a rise in diastolic intracranial pressure (dICP); thereafter, in spite of a further rise in dICP, pICP decreased (2.87 mmHg) following CBF velocity reduction until intracranial circulation arrest (pICP = 1.2 mmHg). A specular pattern was observed when the intraventricular infusion was stopped and CBF velocity returned to basal levels. These findings can be interpreted as indicating a hydraulic mechanism. Initially, when CBF is still constant, pICP rise is due to an increase in venous outflow resistance; subsequently, when CBF decreases following a further increase in venous outflow resistance, the vascular engorgement produces an arteriolar vasodilation. This vasodilation determines an increase in vascular wall stiffness, thus reducing pulse transmission to surrounding subarachnoid spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anile C, Portnoy HD, Branch C (1987) Intracranial compliance is time-dependent. Neurosurgery 20:389–395

    Article  PubMed  CAS  Google Scholar 

  2. Anile C, Rinaldi A, Roselli R, Visocchi M, Ferraresi A, Serricchio M, Dal Lago A, Bradariolo S, Calimici R, Della Corte F, Maira G (1989) An experimental model of “brain tamponade”. Preliminary observations on ICP dynamics, carotid blood flow velocitometry and EEG activity. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 941–943

    Google Scholar 

  3. Anile C, Mangiola A, Gaspari R, Della Corte F, Catapano D, Angileri FF, Maira G (1994) Electrocortical activity recovery after prolonged experimental brain tamponade. In: Nagai H, Kamiya K, Ishii S (eds) Intracranial pressure IX. Springer, Tokyo, pp 154–157

    Google Scholar 

  4. Auer LM, Ishiyama N, Hodde K, Kleinert R, Pucher R (1987) Effect of intracranial pressure on bridging veins in rats. J Neurosurg 67:267–280

    Google Scholar 

  5. Auer LM, Ishiyama N, Puchner R (1987) Cerebrovascular response to intracranial hypertension. Acta Neurochir (Wien) 84:124–128

    Article  CAS  Google Scholar 

  6. Avezaat CJ, Van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume–pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700

    Article  PubMed  CAS  Google Scholar 

  7. Avezaat CJ, Van Eijndhoven JHM (1984) Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical, clinical and experimental study. The Hague, Jongbloed en Zoon 101–130

  8. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD (2004) Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 146:31–41

    Article  Google Scholar 

  9. Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:20–31

    Google Scholar 

  10. Behzadi Y, Liu TT (2005) An arteriolar compliance model of the cerebral blood flow response to neural stimulus. NeuroImage 25:100–111

    Article  Google Scholar 

  11. Burton AC (1944) Relation of structure to function of the tissues of the walls of blood vessels. Physiol Rev 34:19–642

    Google Scholar 

  12. Burton AC (1972) Physiology and biophysics of the circulation. Year Book Medical, Chicago, pp 67–75

    Google Scholar 

  13. Chopp M, Portnoy HD (1980) Systems analysis of intracranial pressure: comparison with volume-pressure test and cerebrospinal fluid pulse amplitude analysis. J Neurosurg 53:516–527

    PubMed  CAS  Google Scholar 

  14. Chopp M, Portnoy HD, Branch C (1983) Hydraulic model of the cerebrovascular bed: an aid to understanding the volume–pressure test. Neurosurgery 13:5–11

    Article  PubMed  CAS  Google Scholar 

  15. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    Article  PubMed  CAS  Google Scholar 

  16. Davis MJ, Gore RW (1989) Length–tension relationship of vascular smooth muscle in single arterioles. Am J Physiol 256(3 Pt 2):H630–H640

    PubMed  CAS  Google Scholar 

  17. Hassler W, Steinmetz H, Gawlowski J (1988) Transcranial Doppler ultrasonography in raised ICP and intracranial circulatory arrest. J Neurosurg 68:745–751

    PubMed  CAS  Google Scholar 

  18. Hossmann K-A, Grosse Ophoff B (1986) Recovery of monkey brain after prolonged ischemia. I. Electrophysiology and brain electrolytes. J Cereb Blood Flow Metab 6:15–21

    PubMed  CAS  Google Scholar 

  19. Ingvar DH, Soderberg U (1956) A new method for measuring cerebral blood flow in relation to the electroencephalogram. Electroencephalogr Clin Neurophysiol Suppl 8(3):403–412

    Article  CAS  Google Scholar 

  20. Langfitt TW (1982) Increased intracranial pressure and the cerebral circulation. In: Youmans JR (ed) Neurological surgery. W.B. Saunders, Philadelphia, pp 846–930

    Google Scholar 

  21. Langfitt TW, Obrist WD (1985) Cerebral blood flow. In: Wilkins RH, Rengachary SS (eds) Neurosurgery. McGraw-Hill, NY, pp 1167–1173

    Google Scholar 

  22. Lindegaard KF, Grip A, Nornes H (1980) Precerebral haemodynamics in brain tamponade. Part 2: experimental studies. Neurochirurgia 23:187–196

    PubMed  CAS  Google Scholar 

  23. Meyer FB, Anderson RE, Sundt TM, Yaksh TL (1986) Intracellular brain pH, indicator tissue perfusion, EEG and histology in severe and moderate focal cortical ischemia in the rabbit. J Cereb Blood Flow Metab 6:71–78

    PubMed  CAS  Google Scholar 

  24. Miller JD, Stanek A, Langfitt TW (1972) Concept of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res 35:411–432

    Article  PubMed  CAS  Google Scholar 

  25. Nakagawa Y, Tsuru M, Yada K (1974) Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg 41:427–434

    PubMed  CAS  Google Scholar 

  26. Portnoy HD, Chopp M, Branch C, Shannon MB (1982) Cerebrospinal fluid waveform as an indicator of cerebral autoregulation. J Neurosurg 56:666–678

    PubMed  CAS  Google Scholar 

  27. Portnoy HD, Chopp M, Branch C (1983) Hydraulic model of myogenic autoregulation and the cerebrovascular bed: the effects of altering systemic arterial pressure. Neurosurgery 13:482–498

    Article  PubMed  CAS  Google Scholar 

  28. Rosner MJ (1986) The vasodilatory cascade and intracranial pressure. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Springer, Berlin, pp 137–141

    Google Scholar 

  29. Shapiro K, Fried A, Takei F, Kohn I (1985) Effect of the skull and dura on neural axis pressure–volume relationships and CSF hydrodynamics. J Neurosurg 63:76–81

    PubMed  CAS  Google Scholar 

  30. Szewczykowski J, Sliwka S, Kunichi A, Dukto P, Dip PG, Korsak-Sliwka J (1977) A fast method for estimating the elastance of the intracranial system. J Neurosurg 47:19–26

    PubMed  CAS  Google Scholar 

  31. Ursino M, Lodi CA (1998) Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am J Physiol 274(5 Pt 2):H1715–H1728

    PubMed  CAS  Google Scholar 

  32. Van Ejindhoven JHM, Avezaat CJJ (1986) Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery 19:507–522

    Article  Google Scholar 

  33. Wolff HG, Forbes HS (1928) The cerebral circulation. V. Observations of the pial circulation during changes in intracranial pressure. Arch Neurol Psychiatry 20:1035–1047

    Google Scholar 

  34. Yada K, Nakagava Y, Tsuru M (1973) Circulatory disturbance of the venous system during experimental intracranial hypertension. J Neurosurg 39:723–729

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Bonis.

Additional information

Commentaries on this paper are available at doi: 10.1007/s00381-008-0755-9 and doi: 10.1007/s00381-008-0756-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anile, C., De Bonis, P., Di Chirico, A. et al. Cerebral blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism?. Childs Nerv Syst 25, 325–335 (2009). https://doi.org/10.1007/s00381-008-0749-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-008-0749-7

Keywords

Navigation